Cislunar Navigation Constellation by Displaced Solar Sails
Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the...
Ausführliche Beschreibung
Autor*in: |
Xiao Pan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The journal of navigation - Cambridge : Univ. Press, 1972, 70(2017), 5, Seite 963 |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2017 ; number:5 ; pages:963 |
Links: |
---|
DOI / URN: |
10.1017/S037346331700025X |
---|
Katalog-ID: |
OLC1997178834 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997178834 | ||
003 | DE-627 | ||
005 | 20220216044355.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1017/S037346331700025X |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1997178834 | ||
035 | |a (DE-599)GBVOLC1997178834 | ||
035 | |a (PRQ)p933-e52ae909f974b453f828ba223379a37b203c837e178bc69c22dd7ff4059ec0280 | ||
035 | |a (KEY)0044480420170000070000500963cislunarnavigationconstellationbydisplacedsolarsai | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 380 |q DNB |
084 | |a 53.84 |2 bkl | ||
084 | |a 55.20 |2 bkl | ||
084 | |a 55.44 |2 bkl | ||
084 | |a 55.54 |2 bkl | ||
084 | |a 42.89 |2 bkl | ||
084 | |a 55.86 |2 bkl | ||
100 | 0 | |a Xiao Pan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cislunar Navigation Constellation by Displaced Solar Sails |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance. | ||
650 | 4 | |a Feasibility studies | |
650 | 4 | |a Feasibility | |
650 | 4 | |a Communication | |
650 | 4 | |a Accuracy | |
650 | 4 | |a Architecture | |
650 | 4 | |a Trajectories | |
650 | 4 | |a Dilution | |
650 | 4 | |a Cislunar space | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Sun | |
650 | 4 | |a Exploration | |
650 | 4 | |a Navigation systems | |
650 | 4 | |a Geometric dilution of precision | |
650 | 4 | |a Working groups | |
650 | 4 | |a Astrophysics | |
650 | 4 | |a Orientation | |
650 | 4 | |a Equipment | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Earth | |
650 | 4 | |a Design optimization | |
650 | 4 | |a Sails | |
650 | 4 | |a Moon | |
650 | 4 | |a Navigation | |
650 | 4 | |a Stability | |
650 | 4 | |a Orbits | |
650 | 4 | |a Equilibrium | |
650 | 4 | |a Evolutionary algorithms | |
650 | 4 | |a Solar sails | |
650 | 4 | |a Lunar exploration | |
700 | 0 | |a Ming Xu |4 oth | |
773 | 0 | 8 | |i Enthalten in |t The journal of navigation |d Cambridge : Univ. Press, 1972 |g 70(2017), 5, Seite 963 |w (DE-627)129297283 |w (DE-600)121410-X |w (DE-576)014490447 |x 0373-4633 |7 nnns |
773 | 1 | 8 | |g volume:70 |g year:2017 |g number:5 |g pages:963 |
856 | 4 | 1 | |u http://dx.doi.org/10.1017/S037346331700025X |3 Volltext |
856 | 4 | 2 | |u https://search.proquest.com/docview/1927238161 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OPC-ARK | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_160 | ||
912 | |a GBV_ILN_162 | ||
936 | b | k | |a 53.84 |q AVZ |
936 | b | k | |a 55.20 |q AVZ |
936 | b | k | |a 55.44 |q AVZ |
936 | b | k | |a 55.54 |q AVZ |
936 | b | k | |a 42.89 |q AVZ |
936 | b | k | |a 55.86 |q AVZ |
951 | |a AR | ||
952 | |d 70 |j 2017 |e 5 |h 963 |
author_variant |
x p xp |
---|---|
matchkey_str |
article:03734633:2017----::ilnraiainoseltobdsl |
hierarchy_sort_str |
2017 |
bklnumber |
53.84 55.20 55.44 55.54 42.89 55.86 |
publishDate |
2017 |
allfields |
10.1017/S037346331700025X doi PQ20171228 (DE-627)OLC1997178834 (DE-599)GBVOLC1997178834 (PRQ)p933-e52ae909f974b453f828ba223379a37b203c837e178bc69c22dd7ff4059ec0280 (KEY)0044480420170000070000500963cislunarnavigationconstellationbydisplacedsolarsai DE-627 ger DE-627 rakwb eng 380 DNB 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 bkl Xiao Pan verfasserin aut Cislunar Navigation Constellation by Displaced Solar Sails 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance. Feasibility studies Feasibility Communication Accuracy Architecture Trajectories Dilution Cislunar space Computer simulation Sun Exploration Navigation systems Geometric dilution of precision Working groups Astrophysics Orientation Equipment Mathematical models Earth Design optimization Sails Moon Navigation Stability Orbits Equilibrium Evolutionary algorithms Solar sails Lunar exploration Ming Xu oth Enthalten in The journal of navigation Cambridge : Univ. Press, 1972 70(2017), 5, Seite 963 (DE-627)129297283 (DE-600)121410-X (DE-576)014490447 0373-4633 nnns volume:70 year:2017 number:5 pages:963 http://dx.doi.org/10.1017/S037346331700025X Volltext https://search.proquest.com/docview/1927238161 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_70 GBV_ILN_160 GBV_ILN_162 53.84 AVZ 55.20 AVZ 55.44 AVZ 55.54 AVZ 42.89 AVZ 55.86 AVZ AR 70 2017 5 963 |
spelling |
10.1017/S037346331700025X doi PQ20171228 (DE-627)OLC1997178834 (DE-599)GBVOLC1997178834 (PRQ)p933-e52ae909f974b453f828ba223379a37b203c837e178bc69c22dd7ff4059ec0280 (KEY)0044480420170000070000500963cislunarnavigationconstellationbydisplacedsolarsai DE-627 ger DE-627 rakwb eng 380 DNB 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 bkl Xiao Pan verfasserin aut Cislunar Navigation Constellation by Displaced Solar Sails 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance. Feasibility studies Feasibility Communication Accuracy Architecture Trajectories Dilution Cislunar space Computer simulation Sun Exploration Navigation systems Geometric dilution of precision Working groups Astrophysics Orientation Equipment Mathematical models Earth Design optimization Sails Moon Navigation Stability Orbits Equilibrium Evolutionary algorithms Solar sails Lunar exploration Ming Xu oth Enthalten in The journal of navigation Cambridge : Univ. Press, 1972 70(2017), 5, Seite 963 (DE-627)129297283 (DE-600)121410-X (DE-576)014490447 0373-4633 nnns volume:70 year:2017 number:5 pages:963 http://dx.doi.org/10.1017/S037346331700025X Volltext https://search.proquest.com/docview/1927238161 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_70 GBV_ILN_160 GBV_ILN_162 53.84 AVZ 55.20 AVZ 55.44 AVZ 55.54 AVZ 42.89 AVZ 55.86 AVZ AR 70 2017 5 963 |
allfields_unstemmed |
10.1017/S037346331700025X doi PQ20171228 (DE-627)OLC1997178834 (DE-599)GBVOLC1997178834 (PRQ)p933-e52ae909f974b453f828ba223379a37b203c837e178bc69c22dd7ff4059ec0280 (KEY)0044480420170000070000500963cislunarnavigationconstellationbydisplacedsolarsai DE-627 ger DE-627 rakwb eng 380 DNB 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 bkl Xiao Pan verfasserin aut Cislunar Navigation Constellation by Displaced Solar Sails 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance. Feasibility studies Feasibility Communication Accuracy Architecture Trajectories Dilution Cislunar space Computer simulation Sun Exploration Navigation systems Geometric dilution of precision Working groups Astrophysics Orientation Equipment Mathematical models Earth Design optimization Sails Moon Navigation Stability Orbits Equilibrium Evolutionary algorithms Solar sails Lunar exploration Ming Xu oth Enthalten in The journal of navigation Cambridge : Univ. Press, 1972 70(2017), 5, Seite 963 (DE-627)129297283 (DE-600)121410-X (DE-576)014490447 0373-4633 nnns volume:70 year:2017 number:5 pages:963 http://dx.doi.org/10.1017/S037346331700025X Volltext https://search.proquest.com/docview/1927238161 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_70 GBV_ILN_160 GBV_ILN_162 53.84 AVZ 55.20 AVZ 55.44 AVZ 55.54 AVZ 42.89 AVZ 55.86 AVZ AR 70 2017 5 963 |
allfieldsGer |
10.1017/S037346331700025X doi PQ20171228 (DE-627)OLC1997178834 (DE-599)GBVOLC1997178834 (PRQ)p933-e52ae909f974b453f828ba223379a37b203c837e178bc69c22dd7ff4059ec0280 (KEY)0044480420170000070000500963cislunarnavigationconstellationbydisplacedsolarsai DE-627 ger DE-627 rakwb eng 380 DNB 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 bkl Xiao Pan verfasserin aut Cislunar Navigation Constellation by Displaced Solar Sails 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance. Feasibility studies Feasibility Communication Accuracy Architecture Trajectories Dilution Cislunar space Computer simulation Sun Exploration Navigation systems Geometric dilution of precision Working groups Astrophysics Orientation Equipment Mathematical models Earth Design optimization Sails Moon Navigation Stability Orbits Equilibrium Evolutionary algorithms Solar sails Lunar exploration Ming Xu oth Enthalten in The journal of navigation Cambridge : Univ. Press, 1972 70(2017), 5, Seite 963 (DE-627)129297283 (DE-600)121410-X (DE-576)014490447 0373-4633 nnns volume:70 year:2017 number:5 pages:963 http://dx.doi.org/10.1017/S037346331700025X Volltext https://search.proquest.com/docview/1927238161 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_70 GBV_ILN_160 GBV_ILN_162 53.84 AVZ 55.20 AVZ 55.44 AVZ 55.54 AVZ 42.89 AVZ 55.86 AVZ AR 70 2017 5 963 |
allfieldsSound |
10.1017/S037346331700025X doi PQ20171228 (DE-627)OLC1997178834 (DE-599)GBVOLC1997178834 (PRQ)p933-e52ae909f974b453f828ba223379a37b203c837e178bc69c22dd7ff4059ec0280 (KEY)0044480420170000070000500963cislunarnavigationconstellationbydisplacedsolarsai DE-627 ger DE-627 rakwb eng 380 DNB 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 bkl Xiao Pan verfasserin aut Cislunar Navigation Constellation by Displaced Solar Sails 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance. Feasibility studies Feasibility Communication Accuracy Architecture Trajectories Dilution Cislunar space Computer simulation Sun Exploration Navigation systems Geometric dilution of precision Working groups Astrophysics Orientation Equipment Mathematical models Earth Design optimization Sails Moon Navigation Stability Orbits Equilibrium Evolutionary algorithms Solar sails Lunar exploration Ming Xu oth Enthalten in The journal of navigation Cambridge : Univ. Press, 1972 70(2017), 5, Seite 963 (DE-627)129297283 (DE-600)121410-X (DE-576)014490447 0373-4633 nnns volume:70 year:2017 number:5 pages:963 http://dx.doi.org/10.1017/S037346331700025X Volltext https://search.proquest.com/docview/1927238161 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_70 GBV_ILN_160 GBV_ILN_162 53.84 AVZ 55.20 AVZ 55.44 AVZ 55.54 AVZ 42.89 AVZ 55.86 AVZ AR 70 2017 5 963 |
language |
English |
source |
Enthalten in The journal of navigation 70(2017), 5, Seite 963 volume:70 year:2017 number:5 pages:963 |
sourceStr |
Enthalten in The journal of navigation 70(2017), 5, Seite 963 volume:70 year:2017 number:5 pages:963 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Feasibility studies Feasibility Communication Accuracy Architecture Trajectories Dilution Cislunar space Computer simulation Sun Exploration Navigation systems Geometric dilution of precision Working groups Astrophysics Orientation Equipment Mathematical models Earth Design optimization Sails Moon Navigation Stability Orbits Equilibrium Evolutionary algorithms Solar sails Lunar exploration |
dewey-raw |
380 |
isfreeaccess_bool |
false |
container_title |
The journal of navigation |
authorswithroles_txt_mv |
Xiao Pan @@aut@@ Ming Xu @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129297283 |
dewey-sort |
3380 |
id |
OLC1997178834 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997178834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216044355.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/S037346331700025X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997178834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997178834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p933-e52ae909f974b453f828ba223379a37b203c837e178bc69c22dd7ff4059ec0280</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0044480420170000070000500963cislunarnavigationconstellationbydisplacedsolarsai</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.84</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.44</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.89</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.86</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiao Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cislunar Navigation Constellation by Displaced Solar Sails</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasibility studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trajectories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dilution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cislunar space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sun</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navigation systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric dilution of precision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Working groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orientation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equipment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sails</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar sails</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lunar exploration</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Xu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of navigation</subfield><subfield code="d">Cambridge : Univ. Press, 1972</subfield><subfield code="g">70(2017), 5, Seite 963</subfield><subfield code="w">(DE-627)129297283</subfield><subfield code="w">(DE-600)121410-X</subfield><subfield code="w">(DE-576)014490447</subfield><subfield code="x">0373-4633</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:963</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1017/S037346331700025X</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1927238161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ARK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_162</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.84</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.20</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.44</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.54</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.89</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.86</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="h">963</subfield></datafield></record></collection>
|
author |
Xiao Pan |
spellingShingle |
Xiao Pan ddc 380 bkl 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 misc Feasibility studies misc Feasibility misc Communication misc Accuracy misc Architecture misc Trajectories misc Dilution misc Cislunar space misc Computer simulation misc Sun misc Exploration misc Navigation systems misc Geometric dilution of precision misc Working groups misc Astrophysics misc Orientation misc Equipment misc Mathematical models misc Earth misc Design optimization misc Sails misc Moon misc Navigation misc Stability misc Orbits misc Equilibrium misc Evolutionary algorithms misc Solar sails misc Lunar exploration Cislunar Navigation Constellation by Displaced Solar Sails |
authorStr |
Xiao Pan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129297283 |
format |
Article |
dewey-ones |
380 - Commerce, communications & transportation |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0373-4633 |
topic_title |
380 DNB 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 bkl Cislunar Navigation Constellation by Displaced Solar Sails Feasibility studies Feasibility Communication Accuracy Architecture Trajectories Dilution Cislunar space Computer simulation Sun Exploration Navigation systems Geometric dilution of precision Working groups Astrophysics Orientation Equipment Mathematical models Earth Design optimization Sails Moon Navigation Stability Orbits Equilibrium Evolutionary algorithms Solar sails Lunar exploration |
topic |
ddc 380 bkl 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 misc Feasibility studies misc Feasibility misc Communication misc Accuracy misc Architecture misc Trajectories misc Dilution misc Cislunar space misc Computer simulation misc Sun misc Exploration misc Navigation systems misc Geometric dilution of precision misc Working groups misc Astrophysics misc Orientation misc Equipment misc Mathematical models misc Earth misc Design optimization misc Sails misc Moon misc Navigation misc Stability misc Orbits misc Equilibrium misc Evolutionary algorithms misc Solar sails misc Lunar exploration |
topic_unstemmed |
ddc 380 bkl 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 misc Feasibility studies misc Feasibility misc Communication misc Accuracy misc Architecture misc Trajectories misc Dilution misc Cislunar space misc Computer simulation misc Sun misc Exploration misc Navigation systems misc Geometric dilution of precision misc Working groups misc Astrophysics misc Orientation misc Equipment misc Mathematical models misc Earth misc Design optimization misc Sails misc Moon misc Navigation misc Stability misc Orbits misc Equilibrium misc Evolutionary algorithms misc Solar sails misc Lunar exploration |
topic_browse |
ddc 380 bkl 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 misc Feasibility studies misc Feasibility misc Communication misc Accuracy misc Architecture misc Trajectories misc Dilution misc Cislunar space misc Computer simulation misc Sun misc Exploration misc Navigation systems misc Geometric dilution of precision misc Working groups misc Astrophysics misc Orientation misc Equipment misc Mathematical models misc Earth misc Design optimization misc Sails misc Moon misc Navigation misc Stability misc Orbits misc Equilibrium misc Evolutionary algorithms misc Solar sails misc Lunar exploration |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m x mx |
hierarchy_parent_title |
The journal of navigation |
hierarchy_parent_id |
129297283 |
dewey-tens |
380 - Commerce, communications & transportation |
hierarchy_top_title |
The journal of navigation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129297283 (DE-600)121410-X (DE-576)014490447 |
title |
Cislunar Navigation Constellation by Displaced Solar Sails |
ctrlnum |
(DE-627)OLC1997178834 (DE-599)GBVOLC1997178834 (PRQ)p933-e52ae909f974b453f828ba223379a37b203c837e178bc69c22dd7ff4059ec0280 (KEY)0044480420170000070000500963cislunarnavigationconstellationbydisplacedsolarsai |
title_full |
Cislunar Navigation Constellation by Displaced Solar Sails |
author_sort |
Xiao Pan |
journal |
The journal of navigation |
journalStr |
The journal of navigation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
963 |
author_browse |
Xiao Pan |
container_volume |
70 |
class |
380 DNB 53.84 bkl 55.20 bkl 55.44 bkl 55.54 bkl 42.89 bkl 55.86 bkl |
format_se |
Aufsätze |
author-letter |
Xiao Pan |
doi_str_mv |
10.1017/S037346331700025X |
dewey-full |
380 |
title_sort |
cislunar navigation constellation by displaced solar sails |
title_auth |
Cislunar Navigation Constellation by Displaced Solar Sails |
abstract |
Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance. |
abstractGer |
Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance. |
abstract_unstemmed |
Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_70 GBV_ILN_160 GBV_ILN_162 |
container_issue |
5 |
title_short |
Cislunar Navigation Constellation by Displaced Solar Sails |
url |
http://dx.doi.org/10.1017/S037346331700025X https://search.proquest.com/docview/1927238161 |
remote_bool |
false |
author2 |
Ming Xu |
author2Str |
Ming Xu |
ppnlink |
129297283 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1017/S037346331700025X |
up_date |
2024-07-04T02:21:37.929Z |
_version_ |
1803613317817696256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997178834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216044355.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/S037346331700025X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997178834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997178834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p933-e52ae909f974b453f828ba223379a37b203c837e178bc69c22dd7ff4059ec0280</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0044480420170000070000500963cislunarnavigationconstellationbydisplacedsolarsai</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.84</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.44</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.89</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.86</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiao Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cislunar Navigation Constellation by Displaced Solar Sails</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasibility studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trajectories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dilution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cislunar space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sun</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navigation systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric dilution of precision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Working groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orientation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equipment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sails</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar sails</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lunar exploration</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Xu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of navigation</subfield><subfield code="d">Cambridge : Univ. Press, 1972</subfield><subfield code="g">70(2017), 5, Seite 963</subfield><subfield code="w">(DE-627)129297283</subfield><subfield code="w">(DE-600)121410-X</subfield><subfield code="w">(DE-576)014490447</subfield><subfield code="x">0373-4633</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:963</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1017/S037346331700025X</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1927238161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ARK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_162</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.84</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.20</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.44</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.54</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.89</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.86</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="h">963</subfield></datafield></record></collection>
|
score |
7.4021015 |