Taxi vacancy duration: a regression analysis
Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distri...
Ausführliche Beschreibung
Autor*in: |
Lee, Won Kyung [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Transportation planning and technology - London [u.a.] : Gordon & Breach, 1972, 40(2017), 7, Seite 771 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2017 ; number:7 ; pages:771 |
Links: |
---|
DOI / URN: |
10.1080/03081060.2017.1340025 |
---|
Katalog-ID: |
OLC1997239205 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997239205 | ||
003 | DE-627 | ||
005 | 20220215065537.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/03081060.2017.1340025 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1997239205 | ||
035 | |a (DE-599)GBVOLC1997239205 | ||
035 | |a (PRQ)i1493-efff8e191ef5b798e27b07c8365d4ef412e08d6f50fbe99173712d11a706b1d40 | ||
035 | |a (KEY)0050157320170000040000700771taxivacancydurationaregressionanalysis | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 380 |q DNB |
084 | |a 74.75 |2 bkl | ||
084 | |a 55.80 |2 bkl | ||
100 | 1 | |a Lee, Won Kyung |e verfasserin |4 aut | |
245 | 1 | 0 | |a Taxi vacancy duration: a regression analysis |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states. | ||
540 | |a Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 | ||
650 | 4 | |a Taxi vacancy | |
650 | 4 | |a accelerated failure time model | |
650 | 4 | |a duration analysis | |
650 | 4 | |a case study | |
650 | 4 | |a taxi demand | |
650 | 4 | |a parametric duration model | |
650 | 4 | |a Normal distribution | |
650 | 4 | |a Public transportation | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Demographic variables | |
650 | 4 | |a Regression analysis | |
650 | 4 | |a Vacancies | |
650 | 4 | |a Social factors | |
650 | 4 | |a Heterogeneity | |
650 | 4 | |a Demographics | |
650 | 4 | |a Land use | |
650 | 4 | |a Taxicabs | |
700 | 1 | |a Sohn, So Young |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Transportation planning and technology |d London [u.a.] : Gordon & Breach, 1972 |g 40(2017), 7, Seite 771 |w (DE-627)129299812 |w (DE-600)121858-X |w (DE-576)014492415 |x 0308-1060 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2017 |g number:7 |g pages:771 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/03081060.2017.1340025 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/03081060.2017.1340025 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1933970581 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 74.75 |q AVZ |
936 | b | k | |a 55.80 |q AVZ |
951 | |a AR | ||
952 | |d 40 |j 2017 |e 7 |h 771 |
author_variant |
w k l wk wkl |
---|---|
matchkey_str |
article:03081060:2017----::aiaacdrtoaers |
hierarchy_sort_str |
2017 |
bklnumber |
74.75 55.80 |
publishDate |
2017 |
allfields |
10.1080/03081060.2017.1340025 doi PQ20171228 (DE-627)OLC1997239205 (DE-599)GBVOLC1997239205 (PRQ)i1493-efff8e191ef5b798e27b07c8365d4ef412e08d6f50fbe99173712d11a706b1d40 (KEY)0050157320170000040000700771taxivacancydurationaregressionanalysis DE-627 ger DE-627 rakwb eng 380 DNB 74.75 bkl 55.80 bkl Lee, Won Kyung verfasserin aut Taxi vacancy duration: a regression analysis 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Taxi vacancy accelerated failure time model duration analysis case study taxi demand parametric duration model Normal distribution Public transportation Mathematical models Demographic variables Regression analysis Vacancies Social factors Heterogeneity Demographics Land use Taxicabs Sohn, So Young oth Enthalten in Transportation planning and technology London [u.a.] : Gordon & Breach, 1972 40(2017), 7, Seite 771 (DE-627)129299812 (DE-600)121858-X (DE-576)014492415 0308-1060 nnns volume:40 year:2017 number:7 pages:771 http://dx.doi.org/10.1080/03081060.2017.1340025 Volltext http://www.tandfonline.com/doi/abs/10.1080/03081060.2017.1340025 https://search.proquest.com/docview/1933970581 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO GBV_ILN_70 74.75 AVZ 55.80 AVZ AR 40 2017 7 771 |
spelling |
10.1080/03081060.2017.1340025 doi PQ20171228 (DE-627)OLC1997239205 (DE-599)GBVOLC1997239205 (PRQ)i1493-efff8e191ef5b798e27b07c8365d4ef412e08d6f50fbe99173712d11a706b1d40 (KEY)0050157320170000040000700771taxivacancydurationaregressionanalysis DE-627 ger DE-627 rakwb eng 380 DNB 74.75 bkl 55.80 bkl Lee, Won Kyung verfasserin aut Taxi vacancy duration: a regression analysis 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Taxi vacancy accelerated failure time model duration analysis case study taxi demand parametric duration model Normal distribution Public transportation Mathematical models Demographic variables Regression analysis Vacancies Social factors Heterogeneity Demographics Land use Taxicabs Sohn, So Young oth Enthalten in Transportation planning and technology London [u.a.] : Gordon & Breach, 1972 40(2017), 7, Seite 771 (DE-627)129299812 (DE-600)121858-X (DE-576)014492415 0308-1060 nnns volume:40 year:2017 number:7 pages:771 http://dx.doi.org/10.1080/03081060.2017.1340025 Volltext http://www.tandfonline.com/doi/abs/10.1080/03081060.2017.1340025 https://search.proquest.com/docview/1933970581 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO GBV_ILN_70 74.75 AVZ 55.80 AVZ AR 40 2017 7 771 |
allfields_unstemmed |
10.1080/03081060.2017.1340025 doi PQ20171228 (DE-627)OLC1997239205 (DE-599)GBVOLC1997239205 (PRQ)i1493-efff8e191ef5b798e27b07c8365d4ef412e08d6f50fbe99173712d11a706b1d40 (KEY)0050157320170000040000700771taxivacancydurationaregressionanalysis DE-627 ger DE-627 rakwb eng 380 DNB 74.75 bkl 55.80 bkl Lee, Won Kyung verfasserin aut Taxi vacancy duration: a regression analysis 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Taxi vacancy accelerated failure time model duration analysis case study taxi demand parametric duration model Normal distribution Public transportation Mathematical models Demographic variables Regression analysis Vacancies Social factors Heterogeneity Demographics Land use Taxicabs Sohn, So Young oth Enthalten in Transportation planning and technology London [u.a.] : Gordon & Breach, 1972 40(2017), 7, Seite 771 (DE-627)129299812 (DE-600)121858-X (DE-576)014492415 0308-1060 nnns volume:40 year:2017 number:7 pages:771 http://dx.doi.org/10.1080/03081060.2017.1340025 Volltext http://www.tandfonline.com/doi/abs/10.1080/03081060.2017.1340025 https://search.proquest.com/docview/1933970581 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO GBV_ILN_70 74.75 AVZ 55.80 AVZ AR 40 2017 7 771 |
allfieldsGer |
10.1080/03081060.2017.1340025 doi PQ20171228 (DE-627)OLC1997239205 (DE-599)GBVOLC1997239205 (PRQ)i1493-efff8e191ef5b798e27b07c8365d4ef412e08d6f50fbe99173712d11a706b1d40 (KEY)0050157320170000040000700771taxivacancydurationaregressionanalysis DE-627 ger DE-627 rakwb eng 380 DNB 74.75 bkl 55.80 bkl Lee, Won Kyung verfasserin aut Taxi vacancy duration: a regression analysis 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Taxi vacancy accelerated failure time model duration analysis case study taxi demand parametric duration model Normal distribution Public transportation Mathematical models Demographic variables Regression analysis Vacancies Social factors Heterogeneity Demographics Land use Taxicabs Sohn, So Young oth Enthalten in Transportation planning and technology London [u.a.] : Gordon & Breach, 1972 40(2017), 7, Seite 771 (DE-627)129299812 (DE-600)121858-X (DE-576)014492415 0308-1060 nnns volume:40 year:2017 number:7 pages:771 http://dx.doi.org/10.1080/03081060.2017.1340025 Volltext http://www.tandfonline.com/doi/abs/10.1080/03081060.2017.1340025 https://search.proquest.com/docview/1933970581 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO GBV_ILN_70 74.75 AVZ 55.80 AVZ AR 40 2017 7 771 |
allfieldsSound |
10.1080/03081060.2017.1340025 doi PQ20171228 (DE-627)OLC1997239205 (DE-599)GBVOLC1997239205 (PRQ)i1493-efff8e191ef5b798e27b07c8365d4ef412e08d6f50fbe99173712d11a706b1d40 (KEY)0050157320170000040000700771taxivacancydurationaregressionanalysis DE-627 ger DE-627 rakwb eng 380 DNB 74.75 bkl 55.80 bkl Lee, Won Kyung verfasserin aut Taxi vacancy duration: a regression analysis 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Taxi vacancy accelerated failure time model duration analysis case study taxi demand parametric duration model Normal distribution Public transportation Mathematical models Demographic variables Regression analysis Vacancies Social factors Heterogeneity Demographics Land use Taxicabs Sohn, So Young oth Enthalten in Transportation planning and technology London [u.a.] : Gordon & Breach, 1972 40(2017), 7, Seite 771 (DE-627)129299812 (DE-600)121858-X (DE-576)014492415 0308-1060 nnns volume:40 year:2017 number:7 pages:771 http://dx.doi.org/10.1080/03081060.2017.1340025 Volltext http://www.tandfonline.com/doi/abs/10.1080/03081060.2017.1340025 https://search.proquest.com/docview/1933970581 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO GBV_ILN_70 74.75 AVZ 55.80 AVZ AR 40 2017 7 771 |
language |
English |
source |
Enthalten in Transportation planning and technology 40(2017), 7, Seite 771 volume:40 year:2017 number:7 pages:771 |
sourceStr |
Enthalten in Transportation planning and technology 40(2017), 7, Seite 771 volume:40 year:2017 number:7 pages:771 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Taxi vacancy accelerated failure time model duration analysis case study taxi demand parametric duration model Normal distribution Public transportation Mathematical models Demographic variables Regression analysis Vacancies Social factors Heterogeneity Demographics Land use Taxicabs |
dewey-raw |
380 |
isfreeaccess_bool |
false |
container_title |
Transportation planning and technology |
authorswithroles_txt_mv |
Lee, Won Kyung @@aut@@ Sohn, So Young @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129299812 |
dewey-sort |
3380 |
id |
OLC1997239205 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997239205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215065537.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03081060.2017.1340025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997239205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997239205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1493-efff8e191ef5b798e27b07c8365d4ef412e08d6f50fbe99173712d11a706b1d40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0050157320170000040000700771taxivacancydurationaregressionanalysis</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Won Kyung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Taxi vacancy duration: a regression analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxi vacancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accelerated failure time model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duration analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">case study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">taxi demand</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parametric duration model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Public transportation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Demographic variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacancies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Demographics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxicabs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sohn, So Young</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transportation planning and technology</subfield><subfield code="d">London [u.a.] : Gordon & Breach, 1972</subfield><subfield code="g">40(2017), 7, Seite 771</subfield><subfield code="w">(DE-627)129299812</subfield><subfield code="w">(DE-600)121858-X</subfield><subfield code="w">(DE-576)014492415</subfield><subfield code="x">0308-1060</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:771</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03081060.2017.1340025</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03081060.2017.1340025</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1933970581</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.75</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2017</subfield><subfield code="e">7</subfield><subfield code="h">771</subfield></datafield></record></collection>
|
author |
Lee, Won Kyung |
spellingShingle |
Lee, Won Kyung ddc 380 bkl 74.75 bkl 55.80 misc Taxi vacancy misc accelerated failure time model misc duration analysis misc case study misc taxi demand misc parametric duration model misc Normal distribution misc Public transportation misc Mathematical models misc Demographic variables misc Regression analysis misc Vacancies misc Social factors misc Heterogeneity misc Demographics misc Land use misc Taxicabs Taxi vacancy duration: a regression analysis |
authorStr |
Lee, Won Kyung |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129299812 |
format |
Article |
dewey-ones |
380 - Commerce, communications & transportation |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0308-1060 |
topic_title |
380 DNB 74.75 bkl 55.80 bkl Taxi vacancy duration: a regression analysis Taxi vacancy accelerated failure time model duration analysis case study taxi demand parametric duration model Normal distribution Public transportation Mathematical models Demographic variables Regression analysis Vacancies Social factors Heterogeneity Demographics Land use Taxicabs |
topic |
ddc 380 bkl 74.75 bkl 55.80 misc Taxi vacancy misc accelerated failure time model misc duration analysis misc case study misc taxi demand misc parametric duration model misc Normal distribution misc Public transportation misc Mathematical models misc Demographic variables misc Regression analysis misc Vacancies misc Social factors misc Heterogeneity misc Demographics misc Land use misc Taxicabs |
topic_unstemmed |
ddc 380 bkl 74.75 bkl 55.80 misc Taxi vacancy misc accelerated failure time model misc duration analysis misc case study misc taxi demand misc parametric duration model misc Normal distribution misc Public transportation misc Mathematical models misc Demographic variables misc Regression analysis misc Vacancies misc Social factors misc Heterogeneity misc Demographics misc Land use misc Taxicabs |
topic_browse |
ddc 380 bkl 74.75 bkl 55.80 misc Taxi vacancy misc accelerated failure time model misc duration analysis misc case study misc taxi demand misc parametric duration model misc Normal distribution misc Public transportation misc Mathematical models misc Demographic variables misc Regression analysis misc Vacancies misc Social factors misc Heterogeneity misc Demographics misc Land use misc Taxicabs |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s y s sy sys |
hierarchy_parent_title |
Transportation planning and technology |
hierarchy_parent_id |
129299812 |
dewey-tens |
380 - Commerce, communications & transportation |
hierarchy_top_title |
Transportation planning and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129299812 (DE-600)121858-X (DE-576)014492415 |
title |
Taxi vacancy duration: a regression analysis |
ctrlnum |
(DE-627)OLC1997239205 (DE-599)GBVOLC1997239205 (PRQ)i1493-efff8e191ef5b798e27b07c8365d4ef412e08d6f50fbe99173712d11a706b1d40 (KEY)0050157320170000040000700771taxivacancydurationaregressionanalysis |
title_full |
Taxi vacancy duration: a regression analysis |
author_sort |
Lee, Won Kyung |
journal |
Transportation planning and technology |
journalStr |
Transportation planning and technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
771 |
author_browse |
Lee, Won Kyung |
container_volume |
40 |
class |
380 DNB 74.75 bkl 55.80 bkl |
format_se |
Aufsätze |
author-letter |
Lee, Won Kyung |
doi_str_mv |
10.1080/03081060.2017.1340025 |
dewey-full |
380 |
title_sort |
taxi vacancy duration: a regression analysis |
title_auth |
Taxi vacancy duration: a regression analysis |
abstract |
Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states. |
abstractGer |
Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states. |
abstract_unstemmed |
Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO GBV_ILN_70 |
container_issue |
7 |
title_short |
Taxi vacancy duration: a regression analysis |
url |
http://dx.doi.org/10.1080/03081060.2017.1340025 http://www.tandfonline.com/doi/abs/10.1080/03081060.2017.1340025 https://search.proquest.com/docview/1933970581 |
remote_bool |
false |
author2 |
Sohn, So Young |
author2Str |
Sohn, So Young |
ppnlink |
129299812 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1080/03081060.2017.1340025 |
up_date |
2024-07-04T02:29:15.912Z |
_version_ |
1803613798047678464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997239205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215065537.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03081060.2017.1340025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997239205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997239205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1493-efff8e191ef5b798e27b07c8365d4ef412e08d6f50fbe99173712d11a706b1d40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0050157320170000040000700771taxivacancydurationaregressionanalysis</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Won Kyung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Taxi vacancy duration: a regression analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxi vacancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accelerated failure time model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duration analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">case study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">taxi demand</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parametric duration model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Public transportation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Demographic variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacancies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Demographics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxicabs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sohn, So Young</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transportation planning and technology</subfield><subfield code="d">London [u.a.] : Gordon & Breach, 1972</subfield><subfield code="g">40(2017), 7, Seite 771</subfield><subfield code="w">(DE-627)129299812</subfield><subfield code="w">(DE-600)121858-X</subfield><subfield code="w">(DE-576)014492415</subfield><subfield code="x">0308-1060</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:771</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03081060.2017.1340025</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03081060.2017.1340025</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1933970581</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.75</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2017</subfield><subfield code="e">7</subfield><subfield code="h">771</subfield></datafield></record></collection>
|
score |
7.399617 |