Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology
Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space v...
Ausführliche Beschreibung
Autor*in: |
Wang, Langning [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on plasma science - New York, NY : IEEE, 1973, 45(2017), 10, Seite 2667-2673 |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2017 ; number:10 ; pages:2667-2673 |
Links: |
---|
DOI / URN: |
10.1109/TPS.2017.2727142 |
---|
Katalog-ID: |
OLC199731777X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199731777X | ||
003 | DE-627 | ||
005 | 20220221143538.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TPS.2017.2727142 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC199731777X | ||
035 | |a (DE-599)GBVOLC199731777X | ||
035 | |a (PRQ)i650-45950e017fc8640ec8c9b1fedbbdbabc7bc42b6fb6c64c94f4443551bf25baa40 | ||
035 | |a (KEY)0058744320170000045001002667solidstatepulseformingmodulesbyutilizingthe2delect | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DNB |
084 | |a 33.80 |2 bkl | ||
100 | 1 | |a Wang, Langning |e verfasserin |4 aut | |
245 | 1 | 0 | |a Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses. | ||
650 | 4 | |a Load modeling | |
650 | 4 | |a Ceramics | |
650 | 4 | |a pulse duration | |
650 | 4 | |a Dielectric constant | |
650 | 4 | |a Electric breakdown | |
650 | 4 | |a pulse-forming network | |
650 | 4 | |a Electrodes | |
650 | 4 | |a Substrates | |
650 | 4 | |a ceramic | |
650 | 4 | |a 2-D slow wave | |
650 | 4 | |a pulse-forming line | |
650 | 4 | |a Capacitors | |
700 | 1 | |a Jia, Yongsheng |4 oth | |
700 | 1 | |a Li, Qiang |4 oth | |
700 | 1 | |a Liu, Jinliang |4 oth | |
700 | 1 | |a Qiu, Yongfeng |4 oth | |
700 | 1 | |a Chu, Xu |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on plasma science |d New York, NY : IEEE, 1973 |g 45(2017), 10, Seite 2667-2673 |w (DE-627)129391379 |w (DE-600)184848-3 |w (DE-576)014776553 |x 0093-3813 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2017 |g number:10 |g pages:2667-2673 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TPS.2017.2727142 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/8000637 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 33.80 |q AVZ |
951 | |a AR | ||
952 | |d 45 |j 2017 |e 10 |h 2667-2673 |
author_variant |
l w lw |
---|---|
matchkey_str |
article:00933813:2017----::oisaeusfrigouebuiiigh2eetoea |
hierarchy_sort_str |
2017 |
bklnumber |
33.80 |
publishDate |
2017 |
allfields |
10.1109/TPS.2017.2727142 doi PQ20171228 (DE-627)OLC199731777X (DE-599)GBVOLC199731777X (PRQ)i650-45950e017fc8640ec8c9b1fedbbdbabc7bc42b6fb6c64c94f4443551bf25baa40 (KEY)0058744320170000045001002667solidstatepulseformingmodulesbyutilizingthe2delect DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Wang, Langning verfasserin aut Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses. Load modeling Ceramics pulse duration Dielectric constant Electric breakdown pulse-forming network Electrodes Substrates ceramic 2-D slow wave pulse-forming line Capacitors Jia, Yongsheng oth Li, Qiang oth Liu, Jinliang oth Qiu, Yongfeng oth Chu, Xu oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 45(2017), 10, Seite 2667-2673 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:45 year:2017 number:10 pages:2667-2673 http://dx.doi.org/10.1109/TPS.2017.2727142 Volltext http://ieeexplore.ieee.org/document/8000637 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 45 2017 10 2667-2673 |
spelling |
10.1109/TPS.2017.2727142 doi PQ20171228 (DE-627)OLC199731777X (DE-599)GBVOLC199731777X (PRQ)i650-45950e017fc8640ec8c9b1fedbbdbabc7bc42b6fb6c64c94f4443551bf25baa40 (KEY)0058744320170000045001002667solidstatepulseformingmodulesbyutilizingthe2delect DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Wang, Langning verfasserin aut Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses. Load modeling Ceramics pulse duration Dielectric constant Electric breakdown pulse-forming network Electrodes Substrates ceramic 2-D slow wave pulse-forming line Capacitors Jia, Yongsheng oth Li, Qiang oth Liu, Jinliang oth Qiu, Yongfeng oth Chu, Xu oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 45(2017), 10, Seite 2667-2673 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:45 year:2017 number:10 pages:2667-2673 http://dx.doi.org/10.1109/TPS.2017.2727142 Volltext http://ieeexplore.ieee.org/document/8000637 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 45 2017 10 2667-2673 |
allfields_unstemmed |
10.1109/TPS.2017.2727142 doi PQ20171228 (DE-627)OLC199731777X (DE-599)GBVOLC199731777X (PRQ)i650-45950e017fc8640ec8c9b1fedbbdbabc7bc42b6fb6c64c94f4443551bf25baa40 (KEY)0058744320170000045001002667solidstatepulseformingmodulesbyutilizingthe2delect DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Wang, Langning verfasserin aut Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses. Load modeling Ceramics pulse duration Dielectric constant Electric breakdown pulse-forming network Electrodes Substrates ceramic 2-D slow wave pulse-forming line Capacitors Jia, Yongsheng oth Li, Qiang oth Liu, Jinliang oth Qiu, Yongfeng oth Chu, Xu oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 45(2017), 10, Seite 2667-2673 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:45 year:2017 number:10 pages:2667-2673 http://dx.doi.org/10.1109/TPS.2017.2727142 Volltext http://ieeexplore.ieee.org/document/8000637 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 45 2017 10 2667-2673 |
allfieldsGer |
10.1109/TPS.2017.2727142 doi PQ20171228 (DE-627)OLC199731777X (DE-599)GBVOLC199731777X (PRQ)i650-45950e017fc8640ec8c9b1fedbbdbabc7bc42b6fb6c64c94f4443551bf25baa40 (KEY)0058744320170000045001002667solidstatepulseformingmodulesbyutilizingthe2delect DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Wang, Langning verfasserin aut Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses. Load modeling Ceramics pulse duration Dielectric constant Electric breakdown pulse-forming network Electrodes Substrates ceramic 2-D slow wave pulse-forming line Capacitors Jia, Yongsheng oth Li, Qiang oth Liu, Jinliang oth Qiu, Yongfeng oth Chu, Xu oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 45(2017), 10, Seite 2667-2673 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:45 year:2017 number:10 pages:2667-2673 http://dx.doi.org/10.1109/TPS.2017.2727142 Volltext http://ieeexplore.ieee.org/document/8000637 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 45 2017 10 2667-2673 |
allfieldsSound |
10.1109/TPS.2017.2727142 doi PQ20171228 (DE-627)OLC199731777X (DE-599)GBVOLC199731777X (PRQ)i650-45950e017fc8640ec8c9b1fedbbdbabc7bc42b6fb6c64c94f4443551bf25baa40 (KEY)0058744320170000045001002667solidstatepulseformingmodulesbyutilizingthe2delect DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Wang, Langning verfasserin aut Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses. Load modeling Ceramics pulse duration Dielectric constant Electric breakdown pulse-forming network Electrodes Substrates ceramic 2-D slow wave pulse-forming line Capacitors Jia, Yongsheng oth Li, Qiang oth Liu, Jinliang oth Qiu, Yongfeng oth Chu, Xu oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 45(2017), 10, Seite 2667-2673 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:45 year:2017 number:10 pages:2667-2673 http://dx.doi.org/10.1109/TPS.2017.2727142 Volltext http://ieeexplore.ieee.org/document/8000637 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 45 2017 10 2667-2673 |
language |
English |
source |
Enthalten in IEEE transactions on plasma science 45(2017), 10, Seite 2667-2673 volume:45 year:2017 number:10 pages:2667-2673 |
sourceStr |
Enthalten in IEEE transactions on plasma science 45(2017), 10, Seite 2667-2673 volume:45 year:2017 number:10 pages:2667-2673 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Load modeling Ceramics pulse duration Dielectric constant Electric breakdown pulse-forming network Electrodes Substrates ceramic 2-D slow wave pulse-forming line Capacitors |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on plasma science |
authorswithroles_txt_mv |
Wang, Langning @@aut@@ Jia, Yongsheng @@oth@@ Li, Qiang @@oth@@ Liu, Jinliang @@oth@@ Qiu, Yongfeng @@oth@@ Chu, Xu @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129391379 |
dewey-sort |
3530 |
id |
OLC199731777X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199731777X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221143538.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPS.2017.2727142</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199731777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199731777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i650-45950e017fc8640ec8c9b1fedbbdbabc7bc42b6fb6c64c94f4443551bf25baa40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0058744320170000045001002667solidstatepulseformingmodulesbyutilizingthe2delect</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Langning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ceramics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pulse duration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectric constant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric breakdown</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pulse-forming network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ceramic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2-D slow wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pulse-forming line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacitors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Yongsheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jinliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Yongfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chu, Xu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on plasma science</subfield><subfield code="d">New York, NY : IEEE, 1973</subfield><subfield code="g">45(2017), 10, Seite 2667-2673</subfield><subfield code="w">(DE-627)129391379</subfield><subfield code="w">(DE-600)184848-3</subfield><subfield code="w">(DE-576)014776553</subfield><subfield code="x">0093-3813</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2667-2673</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPS.2017.2727142</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/8000637</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">2667-2673</subfield></datafield></record></collection>
|
author |
Wang, Langning |
spellingShingle |
Wang, Langning ddc 530 bkl 33.80 misc Load modeling misc Ceramics misc pulse duration misc Dielectric constant misc Electric breakdown misc pulse-forming network misc Electrodes misc Substrates misc ceramic misc 2-D slow wave misc pulse-forming line misc Capacitors Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology |
authorStr |
Wang, Langning |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129391379 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0093-3813 |
topic_title |
530 DNB 33.80 bkl Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology Load modeling Ceramics pulse duration Dielectric constant Electric breakdown pulse-forming network Electrodes Substrates ceramic 2-D slow wave pulse-forming line Capacitors |
topic |
ddc 530 bkl 33.80 misc Load modeling misc Ceramics misc pulse duration misc Dielectric constant misc Electric breakdown misc pulse-forming network misc Electrodes misc Substrates misc ceramic misc 2-D slow wave misc pulse-forming line misc Capacitors |
topic_unstemmed |
ddc 530 bkl 33.80 misc Load modeling misc Ceramics misc pulse duration misc Dielectric constant misc Electric breakdown misc pulse-forming network misc Electrodes misc Substrates misc ceramic misc 2-D slow wave misc pulse-forming line misc Capacitors |
topic_browse |
ddc 530 bkl 33.80 misc Load modeling misc Ceramics misc pulse duration misc Dielectric constant misc Electric breakdown misc pulse-forming network misc Electrodes misc Substrates misc ceramic misc 2-D slow wave misc pulse-forming line misc Capacitors |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y j yj q l ql j l jl y q yq x c xc |
hierarchy_parent_title |
IEEE transactions on plasma science |
hierarchy_parent_id |
129391379 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
IEEE transactions on plasma science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 |
title |
Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology |
ctrlnum |
(DE-627)OLC199731777X (DE-599)GBVOLC199731777X (PRQ)i650-45950e017fc8640ec8c9b1fedbbdbabc7bc42b6fb6c64c94f4443551bf25baa40 (KEY)0058744320170000045001002667solidstatepulseformingmodulesbyutilizingthe2delect |
title_full |
Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology |
author_sort |
Wang, Langning |
journal |
IEEE transactions on plasma science |
journalStr |
IEEE transactions on plasma science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2667 |
author_browse |
Wang, Langning |
container_volume |
45 |
class |
530 DNB 33.80 bkl |
format_se |
Aufsätze |
author-letter |
Wang, Langning |
doi_str_mv |
10.1109/TPS.2017.2727142 |
dewey-full |
530 |
title_sort |
solid-state pulse-forming modules by utilizing the 2-d electrode manufacturing technology |
title_auth |
Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology |
abstract |
Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses. |
abstractGer |
Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses. |
abstract_unstemmed |
Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
10 |
title_short |
Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology |
url |
http://dx.doi.org/10.1109/TPS.2017.2727142 http://ieeexplore.ieee.org/document/8000637 |
remote_bool |
false |
author2 |
Jia, Yongsheng Li, Qiang Liu, Jinliang Qiu, Yongfeng Chu, Xu |
author2Str |
Jia, Yongsheng Li, Qiang Liu, Jinliang Qiu, Yongfeng Chu, Xu |
ppnlink |
129391379 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1109/TPS.2017.2727142 |
up_date |
2024-07-04T02:38:40.854Z |
_version_ |
1803614390430203904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199731777X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221143538.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPS.2017.2727142</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199731777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199731777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i650-45950e017fc8640ec8c9b1fedbbdbabc7bc42b6fb6c64c94f4443551bf25baa40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0058744320170000045001002667solidstatepulseformingmodulesbyutilizingthe2delect</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Langning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nowadays, most of solid-state circuits are fabricated through the application of the 2-D electrode manufacturing technology (printed circuit). In this paper, solid-state pulse-forming modules using 2-D electrode manufacturing technology are presented to produce long pulse duration while less space volume is being occupied. First, on a glass-ceramic (dielectric constant 225) substrate with the dimension of <inline-formula> <tex-math notation="LaTeX">250~\text {mm} \times 95~\text {mm} \times 4 </tex-math></inline-formula> mm, as meander line is the usual delay-line circuit in printed circuit boards, the meander pulse-forming line is used to deliver a high-voltage pulse with pulse duration longer than 120 ns by simulation and test validation. Furthermore, we also discuss the double parallel meander-line and the "V" shaped meander-line in this section. Second, with the same substrate, the LC pulse-forming module is used to generate the high-power pulse with good square pulse quality. By changing the inductance L, this module can be adjusted to deliver pulses with different durations. Third, planar concentric ring PFL is proposed with simulation analysis. In simulation, the planar concentric ring PFL is designed using an attractive storage medium-Barium Titanate (BaTiO 3 base- ceramics (dielectric constant ~1000). At last, a compact PFL based on the structure of multilayer ceramic capacitor is introduced, and can generate a quasi-square pulse in simulation. These various types of solid-state pulse-forming modules may be the potential component in the compact pulsed power systems to generate high-voltage, long-duration pulses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ceramics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pulse duration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectric constant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric breakdown</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pulse-forming network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ceramic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2-D slow wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pulse-forming line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacitors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Yongsheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jinliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Yongfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chu, Xu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on plasma science</subfield><subfield code="d">New York, NY : IEEE, 1973</subfield><subfield code="g">45(2017), 10, Seite 2667-2673</subfield><subfield code="w">(DE-627)129391379</subfield><subfield code="w">(DE-600)184848-3</subfield><subfield code="w">(DE-576)014776553</subfield><subfield code="x">0093-3813</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2667-2673</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPS.2017.2727142</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/8000637</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">2667-2673</subfield></datafield></record></collection>
|
score |
7.401102 |