Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits
Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in toda...
Ausführliche Beschreibung
Autor*in: |
Zhang, Deming [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Schlagwörter: |
Magnetic tunnel junction (MTJ) |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on magnetics - New York, NY : IEEE, 1965, PP, 99, Seite 1-1 |
---|---|
Übergeordnetes Werk: |
volume:PP ; number:99 ; pages:1-1 |
Links: |
---|
DOI / URN: |
10.1109/TMAG.2017.2702743 |
---|
Katalog-ID: |
OLC1997338831 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997338831 | ||
003 | DE-627 | ||
005 | 20220223133813.0 | ||
007 | tu | ||
008 | 171125nuuuuuuuuxx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TMAG.2017.2702743 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC1997338831 | ||
035 | |a (DE-599)GBVOLC1997338831 | ||
035 | |a (PRQ)i946-777050e8c23dd33e40adedcc28895d5dd7499621fe8c20613c060af4d0af00400 | ||
035 | |a (KEY)0061452100000000000009900001reliabilityenhancedseparatedprechargesensingamplif | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 33.75 |2 bkl | ||
084 | |a 33.16 |2 bkl | ||
100 | 1 | |a Zhang, Deming |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively. | ||
650 | 4 | |a Logic circuits | |
650 | 4 | |a Resistance | |
650 | 4 | |a Sensors | |
650 | 4 | |a Sensing reliability | |
650 | 4 | |a Magnetic tunnel junction (MTJ) | |
650 | 4 | |a hybrid CMOS/MTJ logic circuit | |
650 | 4 | |a Discharges (electric) | |
650 | 4 | |a Non-volatility | |
650 | 4 | |a Integrated circuit reliability | |
650 | 4 | |a Magnetic tunneling | |
700 | 1 | |a Zeng, Lang |4 oth | |
700 | 1 | |a Gao, Tianqi |4 oth | |
700 | 1 | |a Gong, Fanghui |4 oth | |
700 | 1 | |a Qin, Xiaowan |4 oth | |
700 | 1 | |a Kang, Wang |4 oth | |
700 | 1 | |a Zhang, Yue |4 oth | |
700 | 1 | |a ZHANG, Youguang |4 oth | |
700 | 1 | |a Klein, Jacques Olivier |4 oth | |
700 | 1 | |a ZHAO, Weisheng |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on magnetics |d New York, NY : IEEE, 1965 |g PP, 99, Seite 1-1 |w (DE-627)129602078 |w (DE-600)241508-2 |w (DE-576)015095789 |x 0018-9464 |7 nnns |
773 | 1 | 8 | |g volume:PP |g number:99 |g pages:1-1 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TMAG.2017.2702743 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7922598 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_4315 | ||
936 | b | k | |a 33.75 |q AVZ |
936 | b | k | |a 33.16 |q AVZ |
951 | |a AR | ||
952 | |d PP |e 99 |h 1-1 |
author_variant |
d z dz |
---|---|
matchkey_str |
article:00189464:uuuuuuuu::eibltehnesprtdrcagsnigmlfefryr |
bklnumber |
33.75 33.16 |
allfields |
10.1109/TMAG.2017.2702743 doi PQ20171125 (DE-627)OLC1997338831 (DE-599)GBVOLC1997338831 (PRQ)i946-777050e8c23dd33e40adedcc28895d5dd7499621fe8c20613c060af4d0af00400 (KEY)0061452100000000000009900001reliabilityenhancedseparatedprechargesensingamplif DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Zhang, Deming verfasserin aut Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively. Logic circuits Resistance Sensors Sensing reliability Magnetic tunnel junction (MTJ) hybrid CMOS/MTJ logic circuit Discharges (electric) Non-volatility Integrated circuit reliability Magnetic tunneling Zeng, Lang oth Gao, Tianqi oth Gong, Fanghui oth Qin, Xiaowan oth Kang, Wang oth Zhang, Yue oth ZHANG, Youguang oth Klein, Jacques Olivier oth ZHAO, Weisheng oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 PP, 99, Seite 1-1 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:PP number:99 pages:1-1 http://dx.doi.org/10.1109/TMAG.2017.2702743 Volltext http://ieeexplore.ieee.org/document/7922598 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_4315 33.75 AVZ 33.16 AVZ AR PP 99 1-1 |
spelling |
10.1109/TMAG.2017.2702743 doi PQ20171125 (DE-627)OLC1997338831 (DE-599)GBVOLC1997338831 (PRQ)i946-777050e8c23dd33e40adedcc28895d5dd7499621fe8c20613c060af4d0af00400 (KEY)0061452100000000000009900001reliabilityenhancedseparatedprechargesensingamplif DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Zhang, Deming verfasserin aut Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively. Logic circuits Resistance Sensors Sensing reliability Magnetic tunnel junction (MTJ) hybrid CMOS/MTJ logic circuit Discharges (electric) Non-volatility Integrated circuit reliability Magnetic tunneling Zeng, Lang oth Gao, Tianqi oth Gong, Fanghui oth Qin, Xiaowan oth Kang, Wang oth Zhang, Yue oth ZHANG, Youguang oth Klein, Jacques Olivier oth ZHAO, Weisheng oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 PP, 99, Seite 1-1 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:PP number:99 pages:1-1 http://dx.doi.org/10.1109/TMAG.2017.2702743 Volltext http://ieeexplore.ieee.org/document/7922598 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_4315 33.75 AVZ 33.16 AVZ AR PP 99 1-1 |
allfields_unstemmed |
10.1109/TMAG.2017.2702743 doi PQ20171125 (DE-627)OLC1997338831 (DE-599)GBVOLC1997338831 (PRQ)i946-777050e8c23dd33e40adedcc28895d5dd7499621fe8c20613c060af4d0af00400 (KEY)0061452100000000000009900001reliabilityenhancedseparatedprechargesensingamplif DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Zhang, Deming verfasserin aut Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively. Logic circuits Resistance Sensors Sensing reliability Magnetic tunnel junction (MTJ) hybrid CMOS/MTJ logic circuit Discharges (electric) Non-volatility Integrated circuit reliability Magnetic tunneling Zeng, Lang oth Gao, Tianqi oth Gong, Fanghui oth Qin, Xiaowan oth Kang, Wang oth Zhang, Yue oth ZHANG, Youguang oth Klein, Jacques Olivier oth ZHAO, Weisheng oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 PP, 99, Seite 1-1 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:PP number:99 pages:1-1 http://dx.doi.org/10.1109/TMAG.2017.2702743 Volltext http://ieeexplore.ieee.org/document/7922598 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_4315 33.75 AVZ 33.16 AVZ AR PP 99 1-1 |
allfieldsGer |
10.1109/TMAG.2017.2702743 doi PQ20171125 (DE-627)OLC1997338831 (DE-599)GBVOLC1997338831 (PRQ)i946-777050e8c23dd33e40adedcc28895d5dd7499621fe8c20613c060af4d0af00400 (KEY)0061452100000000000009900001reliabilityenhancedseparatedprechargesensingamplif DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Zhang, Deming verfasserin aut Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively. Logic circuits Resistance Sensors Sensing reliability Magnetic tunnel junction (MTJ) hybrid CMOS/MTJ logic circuit Discharges (electric) Non-volatility Integrated circuit reliability Magnetic tunneling Zeng, Lang oth Gao, Tianqi oth Gong, Fanghui oth Qin, Xiaowan oth Kang, Wang oth Zhang, Yue oth ZHANG, Youguang oth Klein, Jacques Olivier oth ZHAO, Weisheng oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 PP, 99, Seite 1-1 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:PP number:99 pages:1-1 http://dx.doi.org/10.1109/TMAG.2017.2702743 Volltext http://ieeexplore.ieee.org/document/7922598 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_4315 33.75 AVZ 33.16 AVZ AR PP 99 1-1 |
allfieldsSound |
10.1109/TMAG.2017.2702743 doi PQ20171125 (DE-627)OLC1997338831 (DE-599)GBVOLC1997338831 (PRQ)i946-777050e8c23dd33e40adedcc28895d5dd7499621fe8c20613c060af4d0af00400 (KEY)0061452100000000000009900001reliabilityenhancedseparatedprechargesensingamplif DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Zhang, Deming verfasserin aut Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively. Logic circuits Resistance Sensors Sensing reliability Magnetic tunnel junction (MTJ) hybrid CMOS/MTJ logic circuit Discharges (electric) Non-volatility Integrated circuit reliability Magnetic tunneling Zeng, Lang oth Gao, Tianqi oth Gong, Fanghui oth Qin, Xiaowan oth Kang, Wang oth Zhang, Yue oth ZHANG, Youguang oth Klein, Jacques Olivier oth ZHAO, Weisheng oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 PP, 99, Seite 1-1 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:PP number:99 pages:1-1 http://dx.doi.org/10.1109/TMAG.2017.2702743 Volltext http://ieeexplore.ieee.org/document/7922598 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_4315 33.75 AVZ 33.16 AVZ AR PP 99 1-1 |
language |
English |
source |
Enthalten in IEEE transactions on magnetics PP, 99, Seite 1-1 volume:PP number:99 pages:1-1 |
sourceStr |
Enthalten in IEEE transactions on magnetics PP, 99, Seite 1-1 volume:PP number:99 pages:1-1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Logic circuits Resistance Sensors Sensing reliability Magnetic tunnel junction (MTJ) hybrid CMOS/MTJ logic circuit Discharges (electric) Non-volatility Integrated circuit reliability Magnetic tunneling |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on magnetics |
authorswithroles_txt_mv |
Zhang, Deming @@aut@@ Zeng, Lang @@oth@@ Gao, Tianqi @@oth@@ Gong, Fanghui @@oth@@ Qin, Xiaowan @@oth@@ Kang, Wang @@oth@@ Zhang, Yue @@oth@@ ZHANG, Youguang @@oth@@ Klein, Jacques Olivier @@oth@@ ZHAO, Weisheng @@oth@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
129602078 |
dewey-sort |
3620 |
id |
OLC1997338831 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997338831</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223133813.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125nuuuuuuuuxx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TMAG.2017.2702743</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997338831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997338831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i946-777050e8c23dd33e40adedcc28895d5dd7499621fe8c20613c060af4d0af00400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0061452100000000000009900001reliabilityenhancedseparatedprechargesensingamplif</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Deming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensing reliability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic tunnel junction (MTJ)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid CMOS/MTJ logic circuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discharges (electric)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-volatility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuit reliability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic tunneling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Lang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Tianqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Fanghui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Xiaowan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Wang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ZHANG, Youguang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Jacques Olivier</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ZHAO, Weisheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on magnetics</subfield><subfield code="d">New York, NY : IEEE, 1965</subfield><subfield code="g">PP, 99, Seite 1-1</subfield><subfield code="w">(DE-627)129602078</subfield><subfield code="w">(DE-600)241508-2</subfield><subfield code="w">(DE-576)015095789</subfield><subfield code="x">0018-9464</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:PP</subfield><subfield code="g">number:99</subfield><subfield code="g">pages:1-1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TMAG.2017.2702743</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7922598</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.75</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">PP</subfield><subfield code="e">99</subfield><subfield code="h">1-1</subfield></datafield></record></collection>
|
author |
Zhang, Deming |
spellingShingle |
Zhang, Deming ddc 620 bkl 33.75 bkl 33.16 misc Logic circuits misc Resistance misc Sensors misc Sensing reliability misc Magnetic tunnel junction (MTJ) misc hybrid CMOS/MTJ logic circuit misc Discharges (electric) misc Non-volatility misc Integrated circuit reliability misc Magnetic tunneling Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits |
authorStr |
Zhang, Deming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129602078 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9464 |
topic_title |
620 DNB 33.75 bkl 33.16 bkl Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits Logic circuits Resistance Sensors Sensing reliability Magnetic tunnel junction (MTJ) hybrid CMOS/MTJ logic circuit Discharges (electric) Non-volatility Integrated circuit reliability Magnetic tunneling |
topic |
ddc 620 bkl 33.75 bkl 33.16 misc Logic circuits misc Resistance misc Sensors misc Sensing reliability misc Magnetic tunnel junction (MTJ) misc hybrid CMOS/MTJ logic circuit misc Discharges (electric) misc Non-volatility misc Integrated circuit reliability misc Magnetic tunneling |
topic_unstemmed |
ddc 620 bkl 33.75 bkl 33.16 misc Logic circuits misc Resistance misc Sensors misc Sensing reliability misc Magnetic tunnel junction (MTJ) misc hybrid CMOS/MTJ logic circuit misc Discharges (electric) misc Non-volatility misc Integrated circuit reliability misc Magnetic tunneling |
topic_browse |
ddc 620 bkl 33.75 bkl 33.16 misc Logic circuits misc Resistance misc Sensors misc Sensing reliability misc Magnetic tunnel junction (MTJ) misc hybrid CMOS/MTJ logic circuit misc Discharges (electric) misc Non-volatility misc Integrated circuit reliability misc Magnetic tunneling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
l z lz t g tg f g fg x q xq w k wk y z yz y z yz j o k jo jok w z wz |
hierarchy_parent_title |
IEEE transactions on magnetics |
hierarchy_parent_id |
129602078 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on magnetics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 |
title |
Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits |
ctrlnum |
(DE-627)OLC1997338831 (DE-599)GBVOLC1997338831 (PRQ)i946-777050e8c23dd33e40adedcc28895d5dd7499621fe8c20613c060af4d0af00400 (KEY)0061452100000000000009900001reliabilityenhancedseparatedprechargesensingamplif |
title_full |
Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits |
author_sort |
Zhang, Deming |
journal |
IEEE transactions on magnetics |
journalStr |
IEEE transactions on magnetics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Zhang, Deming |
container_volume |
PP |
class |
620 DNB 33.75 bkl 33.16 bkl |
format_se |
Aufsätze |
author-letter |
Zhang, Deming |
doi_str_mv |
10.1109/TMAG.2017.2702743 |
dewey-full |
620 |
title_sort |
reliability-enhanced separated pre-charge sensing amplifier for hybrid cmos/mtj logic circuits |
title_auth |
Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits |
abstract |
Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively. |
abstractGer |
Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively. |
abstract_unstemmed |
Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_4315 |
container_issue |
99 |
title_short |
Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits |
url |
http://dx.doi.org/10.1109/TMAG.2017.2702743 http://ieeexplore.ieee.org/document/7922598 |
remote_bool |
false |
author2 |
Zeng, Lang Gao, Tianqi Gong, Fanghui Qin, Xiaowan Kang, Wang Zhang, Yue ZHANG, Youguang Klein, Jacques Olivier ZHAO, Weisheng |
author2Str |
Zeng, Lang Gao, Tianqi Gong, Fanghui Qin, Xiaowan Kang, Wang Zhang, Yue ZHANG, Youguang Klein, Jacques Olivier ZHAO, Weisheng |
ppnlink |
129602078 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1109/TMAG.2017.2702743 |
up_date |
2024-07-04T02:41:03.904Z |
_version_ |
1803614540434243584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997338831</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223133813.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125nuuuuuuuuxx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TMAG.2017.2702743</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997338831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997338831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i946-777050e8c23dd33e40adedcc28895d5dd7499621fe8c20613c060af4d0af00400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0061452100000000000009900001reliabilityenhancedseparatedprechargesensingamplif</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Deming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reliability-enhanced Separated Pre-charge Sensing Amplifier for Hybrid CMOS/MTJ Logic Circuits</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Benefitting from its non-volatility, low power, high speed, nearly infinite endurance, good scalability and great CMOS compatibility, magnetic tunnel junction (MTJ) embedded in conventional CMOS logic circuits has been proposed as one potentially powerful solution to introduce non-volatility in today's programmable logic circuits, which is envisioned to extend the Moore's law. However, a critical issue in such hybrid CMOS/MTJ logic circuit is the reliable transmission of MTJ electric signals to the CMOS electronics, i.e., the requirement of nearly zero read/write error for logic applications. In this paper, a reliability-enhanced separated pre-charge sensing amplifier (RESPCSA) is proposed for hybrid CMOS/MTJ logic circuits. By adding two feedback paths with only two transistors between its discharge and evaluation terminal, such proposed RESPCSA can achieve a more and more larger dynamic resistance difference between its two discharge branches with the MTJs during the discharge phase, thereby obtaining a large sensing margin. By using a commercial CMOS 40nm design kit and a physics-based MTJ compact model, hybrid CMOS/MTJ transient and Monte Carlo statistic simulations have been conducted to demonstrate its functionality and evaluate its performance, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensing reliability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic tunnel junction (MTJ)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid CMOS/MTJ logic circuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discharges (electric)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-volatility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuit reliability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic tunneling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Lang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Tianqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Fanghui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Xiaowan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Wang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ZHANG, Youguang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Jacques Olivier</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ZHAO, Weisheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on magnetics</subfield><subfield code="d">New York, NY : IEEE, 1965</subfield><subfield code="g">PP, 99, Seite 1-1</subfield><subfield code="w">(DE-627)129602078</subfield><subfield code="w">(DE-600)241508-2</subfield><subfield code="w">(DE-576)015095789</subfield><subfield code="x">0018-9464</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:PP</subfield><subfield code="g">number:99</subfield><subfield code="g">pages:1-1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TMAG.2017.2702743</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7922598</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.75</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">PP</subfield><subfield code="e">99</subfield><subfield code="h">1-1</subfield></datafield></record></collection>
|
score |
7.40049 |