Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault...
Ausführliche Beschreibung
Autor*in: |
Mai, P Martin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © Springer International Publishing AG 2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Pure and applied geophysics - [Basel] : Birkhäuser, 1964, 174(2017), 9, Seite 3419-3450 |
---|---|
Übergeordnetes Werk: |
volume:174 ; year:2017 ; number:9 ; pages:3419-3450 |
Links: |
---|
DOI / URN: |
10.1007/s00024-017-1536-8 |
---|
Katalog-ID: |
OLC1997390787 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997390787 | ||
003 | DE-627 | ||
005 | 20230715073541.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00024-017-1536-8 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1997390787 | ||
035 | |a (DE-599)GBVOLC1997390787 | ||
035 | |a (PRQ)p1287-2a2a8c4f5a4d272466c24cd206ddd801c782a807a790228da78dbf3f053b5c3b0 | ||
035 | |a (KEY)0066583520170000174000903419accountingforfaultroughnessinpseudodynamicgroundmo | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-101 |
100 | 1 | |a Mai, P Martin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation. | ||
540 | |a Nutzungsrecht: © Springer International Publishing AG 2017 | ||
650 | 4 | |a Earthquake rupture dynamics | |
650 | 4 | |a Earth Sciences | |
650 | 4 | |a fault-surface roughness | |
650 | 4 | |a near-fault shaking | |
650 | 4 | |a Geophysics/Geodesy | |
650 | 4 | |a seismic hazard | |
650 | 4 | |a physics-based ground-motion simulations | |
650 | 4 | |a Earthquakes | |
650 | 4 | |a P-waves | |
650 | 4 | |a Kinematics | |
650 | 4 | |a Perturbations | |
650 | 4 | |a Roughness | |
650 | 4 | |a Time functions | |
650 | 4 | |a Spectra | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Radiation | |
650 | 4 | |a Rake angle | |
650 | 4 | |a Geological faults | |
650 | 4 | |a Time & motion studies | |
650 | 4 | |a Incoherence | |
650 | 4 | |a Modelling | |
650 | 4 | |a Seismic waves | |
650 | 4 | |a Orientation | |
650 | 4 | |a Fault lines | |
650 | 4 | |a Broadband | |
650 | 4 | |a Simulation | |
650 | 4 | |a Rupture | |
650 | 4 | |a Earthquake design | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Surface roughness | |
650 | 4 | |a Segmentation | |
650 | 4 | |a Seismic activity | |
650 | 4 | |a Faults | |
650 | 4 | |a Angles (geometry) | |
650 | 4 | |a Evolution | |
650 | 4 | |a Motion simulation | |
700 | 1 | |a Galis, Martin |4 oth | |
700 | 1 | |a Thingbaijam, Kiran K. S |4 oth | |
700 | 1 | |a Vyas, Jagdish C |4 oth | |
700 | 1 | |a Dunham, Eric M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Pure and applied geophysics |d [Basel] : Birkhäuser, 1964 |g 174(2017), 9, Seite 3419-3450 |w (DE-627)129538353 |w (DE-600)216719-0 |w (DE-576)014971038 |x 0033-4553 |7 nnns |
773 | 1 | 8 | |g volume:174 |g year:2017 |g number:9 |g pages:3419-3450 |
856 | 4 | 1 | |u http://dx.doi.org/10.1007/s00024-017-1536-8 |3 Volltext |
856 | 4 | 2 | |u https://search.proquest.com/docview/1943034889 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_601 | ||
951 | |a AR | ||
952 | |d 174 |j 2017 |e 9 |h 3419-3450 |
author_variant |
p m m pm pmm |
---|---|
matchkey_str |
article:00334553:2017----::conigofutognsipeddnmcrud |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s00024-017-1536-8 doi PQ20171228 (DE-627)OLC1997390787 (DE-599)GBVOLC1997390787 (PRQ)p1287-2a2a8c4f5a4d272466c24cd206ddd801c782a807a790228da78dbf3f053b5c3b0 (KEY)0066583520170000174000903419accountingforfaultroughnessinpseudodynamicgroundmo DE-627 ger DE-627 rakwb eng 550 DE-101 Mai, P Martin verfasserin aut Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation. Nutzungsrecht: © Springer International Publishing AG 2017 Earthquake rupture dynamics Earth Sciences fault-surface roughness near-fault shaking Geophysics/Geodesy seismic hazard physics-based ground-motion simulations Earthquakes P-waves Kinematics Perturbations Roughness Time functions Spectra Computer simulation Radiation Rake angle Geological faults Time & motion studies Incoherence Modelling Seismic waves Orientation Fault lines Broadband Simulation Rupture Earthquake design Dynamics Surface roughness Segmentation Seismic activity Faults Angles (geometry) Evolution Motion simulation Galis, Martin oth Thingbaijam, Kiran K. S oth Vyas, Jagdish C oth Dunham, Eric M oth Enthalten in Pure and applied geophysics [Basel] : Birkhäuser, 1964 174(2017), 9, Seite 3419-3450 (DE-627)129538353 (DE-600)216719-0 (DE-576)014971038 0033-4553 nnns volume:174 year:2017 number:9 pages:3419-3450 http://dx.doi.org/10.1007/s00024-017-1536-8 Volltext https://search.proquest.com/docview/1943034889 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_267 GBV_ILN_601 AR 174 2017 9 3419-3450 |
spelling |
10.1007/s00024-017-1536-8 doi PQ20171228 (DE-627)OLC1997390787 (DE-599)GBVOLC1997390787 (PRQ)p1287-2a2a8c4f5a4d272466c24cd206ddd801c782a807a790228da78dbf3f053b5c3b0 (KEY)0066583520170000174000903419accountingforfaultroughnessinpseudodynamicgroundmo DE-627 ger DE-627 rakwb eng 550 DE-101 Mai, P Martin verfasserin aut Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation. Nutzungsrecht: © Springer International Publishing AG 2017 Earthquake rupture dynamics Earth Sciences fault-surface roughness near-fault shaking Geophysics/Geodesy seismic hazard physics-based ground-motion simulations Earthquakes P-waves Kinematics Perturbations Roughness Time functions Spectra Computer simulation Radiation Rake angle Geological faults Time & motion studies Incoherence Modelling Seismic waves Orientation Fault lines Broadband Simulation Rupture Earthquake design Dynamics Surface roughness Segmentation Seismic activity Faults Angles (geometry) Evolution Motion simulation Galis, Martin oth Thingbaijam, Kiran K. S oth Vyas, Jagdish C oth Dunham, Eric M oth Enthalten in Pure and applied geophysics [Basel] : Birkhäuser, 1964 174(2017), 9, Seite 3419-3450 (DE-627)129538353 (DE-600)216719-0 (DE-576)014971038 0033-4553 nnns volume:174 year:2017 number:9 pages:3419-3450 http://dx.doi.org/10.1007/s00024-017-1536-8 Volltext https://search.proquest.com/docview/1943034889 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_267 GBV_ILN_601 AR 174 2017 9 3419-3450 |
allfields_unstemmed |
10.1007/s00024-017-1536-8 doi PQ20171228 (DE-627)OLC1997390787 (DE-599)GBVOLC1997390787 (PRQ)p1287-2a2a8c4f5a4d272466c24cd206ddd801c782a807a790228da78dbf3f053b5c3b0 (KEY)0066583520170000174000903419accountingforfaultroughnessinpseudodynamicgroundmo DE-627 ger DE-627 rakwb eng 550 DE-101 Mai, P Martin verfasserin aut Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation. Nutzungsrecht: © Springer International Publishing AG 2017 Earthquake rupture dynamics Earth Sciences fault-surface roughness near-fault shaking Geophysics/Geodesy seismic hazard physics-based ground-motion simulations Earthquakes P-waves Kinematics Perturbations Roughness Time functions Spectra Computer simulation Radiation Rake angle Geological faults Time & motion studies Incoherence Modelling Seismic waves Orientation Fault lines Broadband Simulation Rupture Earthquake design Dynamics Surface roughness Segmentation Seismic activity Faults Angles (geometry) Evolution Motion simulation Galis, Martin oth Thingbaijam, Kiran K. S oth Vyas, Jagdish C oth Dunham, Eric M oth Enthalten in Pure and applied geophysics [Basel] : Birkhäuser, 1964 174(2017), 9, Seite 3419-3450 (DE-627)129538353 (DE-600)216719-0 (DE-576)014971038 0033-4553 nnns volume:174 year:2017 number:9 pages:3419-3450 http://dx.doi.org/10.1007/s00024-017-1536-8 Volltext https://search.proquest.com/docview/1943034889 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_267 GBV_ILN_601 AR 174 2017 9 3419-3450 |
allfieldsGer |
10.1007/s00024-017-1536-8 doi PQ20171228 (DE-627)OLC1997390787 (DE-599)GBVOLC1997390787 (PRQ)p1287-2a2a8c4f5a4d272466c24cd206ddd801c782a807a790228da78dbf3f053b5c3b0 (KEY)0066583520170000174000903419accountingforfaultroughnessinpseudodynamicgroundmo DE-627 ger DE-627 rakwb eng 550 DE-101 Mai, P Martin verfasserin aut Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation. Nutzungsrecht: © Springer International Publishing AG 2017 Earthquake rupture dynamics Earth Sciences fault-surface roughness near-fault shaking Geophysics/Geodesy seismic hazard physics-based ground-motion simulations Earthquakes P-waves Kinematics Perturbations Roughness Time functions Spectra Computer simulation Radiation Rake angle Geological faults Time & motion studies Incoherence Modelling Seismic waves Orientation Fault lines Broadband Simulation Rupture Earthquake design Dynamics Surface roughness Segmentation Seismic activity Faults Angles (geometry) Evolution Motion simulation Galis, Martin oth Thingbaijam, Kiran K. S oth Vyas, Jagdish C oth Dunham, Eric M oth Enthalten in Pure and applied geophysics [Basel] : Birkhäuser, 1964 174(2017), 9, Seite 3419-3450 (DE-627)129538353 (DE-600)216719-0 (DE-576)014971038 0033-4553 nnns volume:174 year:2017 number:9 pages:3419-3450 http://dx.doi.org/10.1007/s00024-017-1536-8 Volltext https://search.proquest.com/docview/1943034889 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_267 GBV_ILN_601 AR 174 2017 9 3419-3450 |
allfieldsSound |
10.1007/s00024-017-1536-8 doi PQ20171228 (DE-627)OLC1997390787 (DE-599)GBVOLC1997390787 (PRQ)p1287-2a2a8c4f5a4d272466c24cd206ddd801c782a807a790228da78dbf3f053b5c3b0 (KEY)0066583520170000174000903419accountingforfaultroughnessinpseudodynamicgroundmo DE-627 ger DE-627 rakwb eng 550 DE-101 Mai, P Martin verfasserin aut Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation. Nutzungsrecht: © Springer International Publishing AG 2017 Earthquake rupture dynamics Earth Sciences fault-surface roughness near-fault shaking Geophysics/Geodesy seismic hazard physics-based ground-motion simulations Earthquakes P-waves Kinematics Perturbations Roughness Time functions Spectra Computer simulation Radiation Rake angle Geological faults Time & motion studies Incoherence Modelling Seismic waves Orientation Fault lines Broadband Simulation Rupture Earthquake design Dynamics Surface roughness Segmentation Seismic activity Faults Angles (geometry) Evolution Motion simulation Galis, Martin oth Thingbaijam, Kiran K. S oth Vyas, Jagdish C oth Dunham, Eric M oth Enthalten in Pure and applied geophysics [Basel] : Birkhäuser, 1964 174(2017), 9, Seite 3419-3450 (DE-627)129538353 (DE-600)216719-0 (DE-576)014971038 0033-4553 nnns volume:174 year:2017 number:9 pages:3419-3450 http://dx.doi.org/10.1007/s00024-017-1536-8 Volltext https://search.proquest.com/docview/1943034889 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_267 GBV_ILN_601 AR 174 2017 9 3419-3450 |
language |
English |
source |
Enthalten in Pure and applied geophysics 174(2017), 9, Seite 3419-3450 volume:174 year:2017 number:9 pages:3419-3450 |
sourceStr |
Enthalten in Pure and applied geophysics 174(2017), 9, Seite 3419-3450 volume:174 year:2017 number:9 pages:3419-3450 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Earthquake rupture dynamics Earth Sciences fault-surface roughness near-fault shaking Geophysics/Geodesy seismic hazard physics-based ground-motion simulations Earthquakes P-waves Kinematics Perturbations Roughness Time functions Spectra Computer simulation Radiation Rake angle Geological faults Time & motion studies Incoherence Modelling Seismic waves Orientation Fault lines Broadband Simulation Rupture Earthquake design Dynamics Surface roughness Segmentation Seismic activity Faults Angles (geometry) Evolution Motion simulation |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Pure and applied geophysics |
authorswithroles_txt_mv |
Mai, P Martin @@aut@@ Galis, Martin @@oth@@ Thingbaijam, Kiran K. S @@oth@@ Vyas, Jagdish C @@oth@@ Dunham, Eric M @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129538353 |
dewey-sort |
3550 |
id |
OLC1997390787 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997390787</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715073541.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00024-017-1536-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997390787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997390787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1287-2a2a8c4f5a4d272466c24cd206ddd801c782a807a790228da78dbf3f053b5c3b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0066583520170000174000903419accountingforfaultroughnessinpseudodynamicgroundmo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mai, P Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Springer International Publishing AG 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earthquake rupture dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault-surface roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near-fault shaking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics/Geodesy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic hazard</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physics-based ground-motion simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earthquakes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P-waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rake angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geological faults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time & motion studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incoherence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orientation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rupture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earthquake design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Faults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Angles (geometry)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galis, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thingbaijam, Kiran K. S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vyas, Jagdish C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dunham, Eric M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pure and applied geophysics</subfield><subfield code="d">[Basel] : Birkhäuser, 1964</subfield><subfield code="g">174(2017), 9, Seite 3419-3450</subfield><subfield code="w">(DE-627)129538353</subfield><subfield code="w">(DE-600)216719-0</subfield><subfield code="w">(DE-576)014971038</subfield><subfield code="x">0033-4553</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:174</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:3419-3450</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1007/s00024-017-1536-8</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1943034889</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">174</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="h">3419-3450</subfield></datafield></record></collection>
|
author |
Mai, P Martin |
spellingShingle |
Mai, P Martin ddc 550 misc Earthquake rupture dynamics misc Earth Sciences misc fault-surface roughness misc near-fault shaking misc Geophysics/Geodesy misc seismic hazard misc physics-based ground-motion simulations misc Earthquakes misc P-waves misc Kinematics misc Perturbations misc Roughness misc Time functions misc Spectra misc Computer simulation misc Radiation misc Rake angle misc Geological faults misc Time & motion studies misc Incoherence misc Modelling misc Seismic waves misc Orientation misc Fault lines misc Broadband misc Simulation misc Rupture misc Earthquake design misc Dynamics misc Surface roughness misc Segmentation misc Seismic activity misc Faults misc Angles (geometry) misc Evolution misc Motion simulation Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations |
authorStr |
Mai, P Martin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129538353 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0033-4553 |
topic_title |
550 DE-101 Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations Earthquake rupture dynamics Earth Sciences fault-surface roughness near-fault shaking Geophysics/Geodesy seismic hazard physics-based ground-motion simulations Earthquakes P-waves Kinematics Perturbations Roughness Time functions Spectra Computer simulation Radiation Rake angle Geological faults Time & motion studies Incoherence Modelling Seismic waves Orientation Fault lines Broadband Simulation Rupture Earthquake design Dynamics Surface roughness Segmentation Seismic activity Faults Angles (geometry) Evolution Motion simulation |
topic |
ddc 550 misc Earthquake rupture dynamics misc Earth Sciences misc fault-surface roughness misc near-fault shaking misc Geophysics/Geodesy misc seismic hazard misc physics-based ground-motion simulations misc Earthquakes misc P-waves misc Kinematics misc Perturbations misc Roughness misc Time functions misc Spectra misc Computer simulation misc Radiation misc Rake angle misc Geological faults misc Time & motion studies misc Incoherence misc Modelling misc Seismic waves misc Orientation misc Fault lines misc Broadband misc Simulation misc Rupture misc Earthquake design misc Dynamics misc Surface roughness misc Segmentation misc Seismic activity misc Faults misc Angles (geometry) misc Evolution misc Motion simulation |
topic_unstemmed |
ddc 550 misc Earthquake rupture dynamics misc Earth Sciences misc fault-surface roughness misc near-fault shaking misc Geophysics/Geodesy misc seismic hazard misc physics-based ground-motion simulations misc Earthquakes misc P-waves misc Kinematics misc Perturbations misc Roughness misc Time functions misc Spectra misc Computer simulation misc Radiation misc Rake angle misc Geological faults misc Time & motion studies misc Incoherence misc Modelling misc Seismic waves misc Orientation misc Fault lines misc Broadband misc Simulation misc Rupture misc Earthquake design misc Dynamics misc Surface roughness misc Segmentation misc Seismic activity misc Faults misc Angles (geometry) misc Evolution misc Motion simulation |
topic_browse |
ddc 550 misc Earthquake rupture dynamics misc Earth Sciences misc fault-surface roughness misc near-fault shaking misc Geophysics/Geodesy misc seismic hazard misc physics-based ground-motion simulations misc Earthquakes misc P-waves misc Kinematics misc Perturbations misc Roughness misc Time functions misc Spectra misc Computer simulation misc Radiation misc Rake angle misc Geological faults misc Time & motion studies misc Incoherence misc Modelling misc Seismic waves misc Orientation misc Fault lines misc Broadband misc Simulation misc Rupture misc Earthquake design misc Dynamics misc Surface roughness misc Segmentation misc Seismic activity misc Faults misc Angles (geometry) misc Evolution misc Motion simulation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m g mg k k s t kks kkst j c v jc jcv e m d em emd |
hierarchy_parent_title |
Pure and applied geophysics |
hierarchy_parent_id |
129538353 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Pure and applied geophysics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129538353 (DE-600)216719-0 (DE-576)014971038 |
title |
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations |
ctrlnum |
(DE-627)OLC1997390787 (DE-599)GBVOLC1997390787 (PRQ)p1287-2a2a8c4f5a4d272466c24cd206ddd801c782a807a790228da78dbf3f053b5c3b0 (KEY)0066583520170000174000903419accountingforfaultroughnessinpseudodynamicgroundmo |
title_full |
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations |
author_sort |
Mai, P Martin |
journal |
Pure and applied geophysics |
journalStr |
Pure and applied geophysics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
3419 |
author_browse |
Mai, P Martin |
container_volume |
174 |
class |
550 DE-101 |
format_se |
Aufsätze |
author-letter |
Mai, P Martin |
doi_str_mv |
10.1007/s00024-017-1536-8 |
dewey-full |
550 |
title_sort |
accounting for fault roughness in pseudo-dynamic ground-motion simulations |
title_auth |
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations |
abstract |
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation. |
abstractGer |
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation. |
abstract_unstemmed |
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_267 GBV_ILN_601 |
container_issue |
9 |
title_short |
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations |
url |
http://dx.doi.org/10.1007/s00024-017-1536-8 https://search.proquest.com/docview/1943034889 |
remote_bool |
false |
author2 |
Galis, Martin Thingbaijam, Kiran K. S Vyas, Jagdish C Dunham, Eric M |
author2Str |
Galis, Martin Thingbaijam, Kiran K. S Vyas, Jagdish C Dunham, Eric M |
ppnlink |
129538353 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1007/s00024-017-1536-8 |
up_date |
2024-07-04T02:48:13.792Z |
_version_ |
1803614991200288768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997390787</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715073541.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00024-017-1536-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997390787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997390787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1287-2a2a8c4f5a4d272466c24cd206ddd801c782a807a790228da78dbf3f053b5c3b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0066583520170000174000903419accountingforfaultroughnessinpseudodynamicgroundmo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mai, P Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Springer International Publishing AG 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earthquake rupture dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault-surface roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near-fault shaking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics/Geodesy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic hazard</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physics-based ground-motion simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earthquakes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P-waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rake angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geological faults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time & motion studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incoherence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orientation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rupture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earthquake design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Faults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Angles (geometry)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galis, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thingbaijam, Kiran K. S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vyas, Jagdish C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dunham, Eric M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pure and applied geophysics</subfield><subfield code="d">[Basel] : Birkhäuser, 1964</subfield><subfield code="g">174(2017), 9, Seite 3419-3450</subfield><subfield code="w">(DE-627)129538353</subfield><subfield code="w">(DE-600)216719-0</subfield><subfield code="w">(DE-576)014971038</subfield><subfield code="x">0033-4553</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:174</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:3419-3450</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1007/s00024-017-1536-8</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1943034889</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">174</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="h">3419-3450</subfield></datafield></record></collection>
|
score |
7.4010687 |