Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces
In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, e...
Ausführliche Beschreibung
Autor*in: |
Baena, Juan D [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on antennas and propagation - New York, NY : IEEE, 1963, 65(2017), 8, Seite 4124-4133 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2017 ; number:8 ; pages:4124-4133 |
Links: |
---|
DOI / URN: |
10.1109/TAP.2017.2717964 |
---|
Katalog-ID: |
OLC1997408708 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997408708 | ||
003 | DE-627 | ||
005 | 20230715073630.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TAP.2017.2717964 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC1997408708 | ||
035 | |a (DE-599)GBVOLC1997408708 | ||
035 | |a (PRQ)i942-1d8083d70ab746ba88b757791be893131dc5c1fdaf02fd9e59a2c2fa7e10231f0 | ||
035 | |a (KEY)0068432520170000065000804124broadbandandthinlineartocircularpolarizersbasedons | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Baena, Juan D |e verfasserin |4 aut | |
245 | 1 | 0 | |a Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments. | ||
650 | 4 | |a Metals | |
650 | 4 | |a Impedance | |
650 | 4 | |a Surface impedance | |
650 | 4 | |a Surface waves | |
650 | 4 | |a frequency selective surfaces | |
650 | 4 | |a Broadband communication | |
650 | 4 | |a Broadband antennas | |
650 | 4 | |a Circular polarization | |
650 | 4 | |a Polarization | |
700 | 1 | |a Glybovski, Stanislav B |4 oth | |
700 | 1 | |a del Risco, Juan P |4 oth | |
700 | 1 | |a Slobozhanyuk, Alexey P |4 oth | |
700 | 1 | |a Belov, Pavel A |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on antennas and propagation |d New York, NY : IEEE, 1963 |g 65(2017), 8, Seite 4124-4133 |w (DE-627)129547239 |w (DE-600)218496-5 |w (DE-576)014998114 |x 0018-926X |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2017 |g number:8 |g pages:4124-4133 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TAP.2017.2717964 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7954701 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_201 | ||
951 | |a AR | ||
952 | |d 65 |j 2017 |e 8 |h 4124-4133 |
author_variant |
j d b jd jdb |
---|---|
matchkey_str |
article:0018926X:2017----::rabnadhnieroiclroaiesaeoslcmlmn |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TAP.2017.2717964 doi PQ20171125 (DE-627)OLC1997408708 (DE-599)GBVOLC1997408708 (PRQ)i942-1d8083d70ab746ba88b757791be893131dc5c1fdaf02fd9e59a2c2fa7e10231f0 (KEY)0068432520170000065000804124broadbandandthinlineartocircularpolarizersbasedons DE-627 ger DE-627 rakwb eng 620 DNB Baena, Juan D verfasserin aut Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments. Metals Impedance Surface impedance Surface waves frequency selective surfaces Broadband communication Broadband antennas Circular polarization Polarization Glybovski, Stanislav B oth del Risco, Juan P oth Slobozhanyuk, Alexey P oth Belov, Pavel A oth Enthalten in IEEE transactions on antennas and propagation New York, NY : IEEE, 1963 65(2017), 8, Seite 4124-4133 (DE-627)129547239 (DE-600)218496-5 (DE-576)014998114 0018-926X nnns volume:65 year:2017 number:8 pages:4124-4133 http://dx.doi.org/10.1109/TAP.2017.2717964 Volltext http://ieeexplore.ieee.org/document/7954701 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_70 GBV_ILN_201 AR 65 2017 8 4124-4133 |
spelling |
10.1109/TAP.2017.2717964 doi PQ20171125 (DE-627)OLC1997408708 (DE-599)GBVOLC1997408708 (PRQ)i942-1d8083d70ab746ba88b757791be893131dc5c1fdaf02fd9e59a2c2fa7e10231f0 (KEY)0068432520170000065000804124broadbandandthinlineartocircularpolarizersbasedons DE-627 ger DE-627 rakwb eng 620 DNB Baena, Juan D verfasserin aut Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments. Metals Impedance Surface impedance Surface waves frequency selective surfaces Broadband communication Broadband antennas Circular polarization Polarization Glybovski, Stanislav B oth del Risco, Juan P oth Slobozhanyuk, Alexey P oth Belov, Pavel A oth Enthalten in IEEE transactions on antennas and propagation New York, NY : IEEE, 1963 65(2017), 8, Seite 4124-4133 (DE-627)129547239 (DE-600)218496-5 (DE-576)014998114 0018-926X nnns volume:65 year:2017 number:8 pages:4124-4133 http://dx.doi.org/10.1109/TAP.2017.2717964 Volltext http://ieeexplore.ieee.org/document/7954701 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_70 GBV_ILN_201 AR 65 2017 8 4124-4133 |
allfields_unstemmed |
10.1109/TAP.2017.2717964 doi PQ20171125 (DE-627)OLC1997408708 (DE-599)GBVOLC1997408708 (PRQ)i942-1d8083d70ab746ba88b757791be893131dc5c1fdaf02fd9e59a2c2fa7e10231f0 (KEY)0068432520170000065000804124broadbandandthinlineartocircularpolarizersbasedons DE-627 ger DE-627 rakwb eng 620 DNB Baena, Juan D verfasserin aut Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments. Metals Impedance Surface impedance Surface waves frequency selective surfaces Broadband communication Broadband antennas Circular polarization Polarization Glybovski, Stanislav B oth del Risco, Juan P oth Slobozhanyuk, Alexey P oth Belov, Pavel A oth Enthalten in IEEE transactions on antennas and propagation New York, NY : IEEE, 1963 65(2017), 8, Seite 4124-4133 (DE-627)129547239 (DE-600)218496-5 (DE-576)014998114 0018-926X nnns volume:65 year:2017 number:8 pages:4124-4133 http://dx.doi.org/10.1109/TAP.2017.2717964 Volltext http://ieeexplore.ieee.org/document/7954701 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_70 GBV_ILN_201 AR 65 2017 8 4124-4133 |
allfieldsGer |
10.1109/TAP.2017.2717964 doi PQ20171125 (DE-627)OLC1997408708 (DE-599)GBVOLC1997408708 (PRQ)i942-1d8083d70ab746ba88b757791be893131dc5c1fdaf02fd9e59a2c2fa7e10231f0 (KEY)0068432520170000065000804124broadbandandthinlineartocircularpolarizersbasedons DE-627 ger DE-627 rakwb eng 620 DNB Baena, Juan D verfasserin aut Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments. Metals Impedance Surface impedance Surface waves frequency selective surfaces Broadband communication Broadband antennas Circular polarization Polarization Glybovski, Stanislav B oth del Risco, Juan P oth Slobozhanyuk, Alexey P oth Belov, Pavel A oth Enthalten in IEEE transactions on antennas and propagation New York, NY : IEEE, 1963 65(2017), 8, Seite 4124-4133 (DE-627)129547239 (DE-600)218496-5 (DE-576)014998114 0018-926X nnns volume:65 year:2017 number:8 pages:4124-4133 http://dx.doi.org/10.1109/TAP.2017.2717964 Volltext http://ieeexplore.ieee.org/document/7954701 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_70 GBV_ILN_201 AR 65 2017 8 4124-4133 |
allfieldsSound |
10.1109/TAP.2017.2717964 doi PQ20171125 (DE-627)OLC1997408708 (DE-599)GBVOLC1997408708 (PRQ)i942-1d8083d70ab746ba88b757791be893131dc5c1fdaf02fd9e59a2c2fa7e10231f0 (KEY)0068432520170000065000804124broadbandandthinlineartocircularpolarizersbasedons DE-627 ger DE-627 rakwb eng 620 DNB Baena, Juan D verfasserin aut Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments. Metals Impedance Surface impedance Surface waves frequency selective surfaces Broadband communication Broadband antennas Circular polarization Polarization Glybovski, Stanislav B oth del Risco, Juan P oth Slobozhanyuk, Alexey P oth Belov, Pavel A oth Enthalten in IEEE transactions on antennas and propagation New York, NY : IEEE, 1963 65(2017), 8, Seite 4124-4133 (DE-627)129547239 (DE-600)218496-5 (DE-576)014998114 0018-926X nnns volume:65 year:2017 number:8 pages:4124-4133 http://dx.doi.org/10.1109/TAP.2017.2717964 Volltext http://ieeexplore.ieee.org/document/7954701 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_70 GBV_ILN_201 AR 65 2017 8 4124-4133 |
language |
English |
source |
Enthalten in IEEE transactions on antennas and propagation 65(2017), 8, Seite 4124-4133 volume:65 year:2017 number:8 pages:4124-4133 |
sourceStr |
Enthalten in IEEE transactions on antennas and propagation 65(2017), 8, Seite 4124-4133 volume:65 year:2017 number:8 pages:4124-4133 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Metals Impedance Surface impedance Surface waves frequency selective surfaces Broadband communication Broadband antennas Circular polarization Polarization |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on antennas and propagation |
authorswithroles_txt_mv |
Baena, Juan D @@aut@@ Glybovski, Stanislav B @@oth@@ del Risco, Juan P @@oth@@ Slobozhanyuk, Alexey P @@oth@@ Belov, Pavel A @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129547239 |
dewey-sort |
3620 |
id |
OLC1997408708 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997408708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715073630.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAP.2017.2717964</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997408708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997408708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i942-1d8083d70ab746ba88b757791be893131dc5c1fdaf02fd9e59a2c2fa7e10231f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0068432520170000065000804124broadbandandthinlineartocircularpolarizersbasedons</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baena, Juan D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency selective surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband antennas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circular polarization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polarization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glybovski, Stanislav B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">del Risco, Juan P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Slobozhanyuk, Alexey P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Belov, Pavel A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on antennas and propagation</subfield><subfield code="d">New York, NY : IEEE, 1963</subfield><subfield code="g">65(2017), 8, Seite 4124-4133</subfield><subfield code="w">(DE-627)129547239</subfield><subfield code="w">(DE-600)218496-5</subfield><subfield code="w">(DE-576)014998114</subfield><subfield code="x">0018-926X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:4124-4133</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAP.2017.2717964</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7954701</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">4124-4133</subfield></datafield></record></collection>
|
author |
Baena, Juan D |
spellingShingle |
Baena, Juan D ddc 620 misc Metals misc Impedance misc Surface impedance misc Surface waves misc frequency selective surfaces misc Broadband communication misc Broadband antennas misc Circular polarization misc Polarization Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces |
authorStr |
Baena, Juan D |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129547239 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-926X |
topic_title |
620 DNB Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces Metals Impedance Surface impedance Surface waves frequency selective surfaces Broadband communication Broadband antennas Circular polarization Polarization |
topic |
ddc 620 misc Metals misc Impedance misc Surface impedance misc Surface waves misc frequency selective surfaces misc Broadband communication misc Broadband antennas misc Circular polarization misc Polarization |
topic_unstemmed |
ddc 620 misc Metals misc Impedance misc Surface impedance misc Surface waves misc frequency selective surfaces misc Broadband communication misc Broadband antennas misc Circular polarization misc Polarization |
topic_browse |
ddc 620 misc Metals misc Impedance misc Surface impedance misc Surface waves misc frequency selective surfaces misc Broadband communication misc Broadband antennas misc Circular polarization misc Polarization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s b g sb sbg r j p d rjp rjpd a p s ap aps p a b pa pab |
hierarchy_parent_title |
IEEE transactions on antennas and propagation |
hierarchy_parent_id |
129547239 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on antennas and propagation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129547239 (DE-600)218496-5 (DE-576)014998114 |
title |
Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces |
ctrlnum |
(DE-627)OLC1997408708 (DE-599)GBVOLC1997408708 (PRQ)i942-1d8083d70ab746ba88b757791be893131dc5c1fdaf02fd9e59a2c2fa7e10231f0 (KEY)0068432520170000065000804124broadbandandthinlineartocircularpolarizersbasedons |
title_full |
Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces |
author_sort |
Baena, Juan D |
journal |
IEEE transactions on antennas and propagation |
journalStr |
IEEE transactions on antennas and propagation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
4124 |
author_browse |
Baena, Juan D |
container_volume |
65 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Baena, Juan D |
doi_str_mv |
10.1109/TAP.2017.2717964 |
dewey-full |
620 |
title_sort |
broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces |
title_auth |
Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces |
abstract |
In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments. |
abstractGer |
In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments. |
abstract_unstemmed |
In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_70 GBV_ILN_201 |
container_issue |
8 |
title_short |
Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces |
url |
http://dx.doi.org/10.1109/TAP.2017.2717964 http://ieeexplore.ieee.org/document/7954701 |
remote_bool |
false |
author2 |
Glybovski, Stanislav B del Risco, Juan P Slobozhanyuk, Alexey P Belov, Pavel A |
author2Str |
Glybovski, Stanislav B del Risco, Juan P Slobozhanyuk, Alexey P Belov, Pavel A |
ppnlink |
129547239 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1109/TAP.2017.2717964 |
up_date |
2024-07-04T02:50:14.172Z |
_version_ |
1803615117437304832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997408708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715073630.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAP.2017.2717964</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997408708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997408708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i942-1d8083d70ab746ba88b757791be893131dc5c1fdaf02fd9e59a2c2fa7e10231f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0068432520170000065000804124broadbandandthinlineartocircularpolarizersbasedons</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baena, Juan D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we have studied a practical design of a broadband linear-to-circular polarizer based on a self-complementary metasurface composed of zigzag-shaped metal strips printed on a dielectric substrate. The term self-complementary indicates that the structure is identical to its complement, except for some translation smaller than the periodicity. This property together with the nonresonant response of the unit cells ensures broadband conversion from linear polarization to circular polarization. Although we have experimentally achieved a relative 3-dB-axial-ratio (AR) bandwidth (BW) of 53%, in principle, it could reach up to 70.5%. Moreover, the studied metasurface has a very small periodicity, which avoids any higher order grating lobes and provides angular stability of the phenomenon. In fact, the relative 3-dB-AR BW obtained in experiments stays always above 40% for incidence angles within ±30°. An excellent agreement was achieved among theory, simulations, and experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency selective surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband antennas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circular polarization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polarization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glybovski, Stanislav B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">del Risco, Juan P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Slobozhanyuk, Alexey P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Belov, Pavel A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on antennas and propagation</subfield><subfield code="d">New York, NY : IEEE, 1963</subfield><subfield code="g">65(2017), 8, Seite 4124-4133</subfield><subfield code="w">(DE-627)129547239</subfield><subfield code="w">(DE-600)218496-5</subfield><subfield code="w">(DE-576)014998114</subfield><subfield code="x">0018-926X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:4124-4133</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAP.2017.2717964</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7954701</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">4124-4133</subfield></datafield></record></collection>
|
score |
7.401457 |