Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species
We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility...
Ausführliche Beschreibung
Autor*in: |
Harald Stark [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science & technology - Washington, DC : ACS Publ., 1967, 51(2017), 15, Seite 8491 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2017 ; number:15 ; pages:8491 |
Links: |
---|
Katalog-ID: |
OLC199746330X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199746330X | ||
003 | DE-627 | ||
005 | 20230715073853.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC199746330X | ||
035 | |a (DE-599)GBVOLC199746330X | ||
035 | |a (PRQ)p931-65b6c63224dea4889149b45ac1c6313101cd060fd5403c14911e0525b30503820 | ||
035 | |a (KEY)0072627320170000051001508491impactofthermaldecompositiononthermaldesorptionins | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 050 |a 333.7 |q DNB |
100 | 0 | |a Harald Stark |e verfasserin |4 aut | |
245 | 1 | 0 | |a Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions. | ||
650 | 4 | |a High resolution | |
650 | 4 | |a Desorption | |
650 | 4 | |a Partitioning | |
650 | 4 | |a Inlets | |
650 | 4 | |a Temperature | |
650 | 4 | |a Impact analysis | |
650 | 4 | |a Thermal decomposition | |
650 | 4 | |a Molecules | |
650 | 4 | |a Decomposition | |
650 | 4 | |a Inlets (topography) | |
650 | 4 | |a Air sampling | |
650 | 4 | |a Carbon dioxide | |
650 | 4 | |a Ionization | |
650 | 4 | |a Volatility | |
650 | 4 | |a Citric acid | |
700 | 0 | |a Reddy L N Yatavelli |4 oth | |
700 | 0 | |a Samantha L Thompson |4 oth | |
700 | 0 | |a Hyungu Kang |4 oth | |
700 | 0 | |a Jordan E Krechmer |4 oth | |
700 | 0 | |a Joel R Kimmel |4 oth | |
700 | 0 | |a Brett B Palm |4 oth | |
700 | 0 | |a Weiwei Hu |4 oth | |
700 | 0 | |a Patrick L Hayes |4 oth | |
700 | 0 | |a Douglas A Day |4 oth | |
700 | 0 | |a Pedro Campuzano-Jost |4 oth | |
700 | 0 | |a Manjula R Canagaratna |4 oth | |
700 | 0 | |a John T Jayne |4 oth | |
700 | 0 | |a Douglas R Worsnop |4 oth | |
700 | 0 | |a Jose L Jimenez |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Environmental science & technology |d Washington, DC : ACS Publ., 1967 |g 51(2017), 15, Seite 8491 |w (DE-627)129852457 |w (DE-600)280653-8 |w (DE-576)01515274X |x 0013-936X |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2017 |g number:15 |g pages:8491 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1936539725 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 51 |j 2017 |e 15 |h 8491 |
author_variant |
h s hs |
---|---|
matchkey_str |
article:0013936X:2017----::matfhradcmoiinnhradsrtoisrmnsdatgotemgaaayifruniynvl |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
PQ20171228 (DE-627)OLC199746330X (DE-599)GBVOLC199746330X (PRQ)p931-65b6c63224dea4889149b45ac1c6313101cd060fd5403c14911e0525b30503820 (KEY)0072627320170000051001508491impactofthermaldecompositiononthermaldesorptionins DE-627 ger DE-627 rakwb eng 050 333.7 DNB Harald Stark verfasserin aut Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions. High resolution Desorption Partitioning Inlets Temperature Impact analysis Thermal decomposition Molecules Decomposition Inlets (topography) Air sampling Carbon dioxide Ionization Volatility Citric acid Reddy L N Yatavelli oth Samantha L Thompson oth Hyungu Kang oth Jordan E Krechmer oth Joel R Kimmel oth Brett B Palm oth Weiwei Hu oth Patrick L Hayes oth Douglas A Day oth Pedro Campuzano-Jost oth Manjula R Canagaratna oth John T Jayne oth Douglas R Worsnop oth Jose L Jimenez oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 51(2017), 15, Seite 8491 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:51 year:2017 number:15 pages:8491 https://search.proquest.com/docview/1936539725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 51 2017 15 8491 |
spelling |
PQ20171228 (DE-627)OLC199746330X (DE-599)GBVOLC199746330X (PRQ)p931-65b6c63224dea4889149b45ac1c6313101cd060fd5403c14911e0525b30503820 (KEY)0072627320170000051001508491impactofthermaldecompositiononthermaldesorptionins DE-627 ger DE-627 rakwb eng 050 333.7 DNB Harald Stark verfasserin aut Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions. High resolution Desorption Partitioning Inlets Temperature Impact analysis Thermal decomposition Molecules Decomposition Inlets (topography) Air sampling Carbon dioxide Ionization Volatility Citric acid Reddy L N Yatavelli oth Samantha L Thompson oth Hyungu Kang oth Jordan E Krechmer oth Joel R Kimmel oth Brett B Palm oth Weiwei Hu oth Patrick L Hayes oth Douglas A Day oth Pedro Campuzano-Jost oth Manjula R Canagaratna oth John T Jayne oth Douglas R Worsnop oth Jose L Jimenez oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 51(2017), 15, Seite 8491 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:51 year:2017 number:15 pages:8491 https://search.proquest.com/docview/1936539725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 51 2017 15 8491 |
allfields_unstemmed |
PQ20171228 (DE-627)OLC199746330X (DE-599)GBVOLC199746330X (PRQ)p931-65b6c63224dea4889149b45ac1c6313101cd060fd5403c14911e0525b30503820 (KEY)0072627320170000051001508491impactofthermaldecompositiononthermaldesorptionins DE-627 ger DE-627 rakwb eng 050 333.7 DNB Harald Stark verfasserin aut Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions. High resolution Desorption Partitioning Inlets Temperature Impact analysis Thermal decomposition Molecules Decomposition Inlets (topography) Air sampling Carbon dioxide Ionization Volatility Citric acid Reddy L N Yatavelli oth Samantha L Thompson oth Hyungu Kang oth Jordan E Krechmer oth Joel R Kimmel oth Brett B Palm oth Weiwei Hu oth Patrick L Hayes oth Douglas A Day oth Pedro Campuzano-Jost oth Manjula R Canagaratna oth John T Jayne oth Douglas R Worsnop oth Jose L Jimenez oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 51(2017), 15, Seite 8491 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:51 year:2017 number:15 pages:8491 https://search.proquest.com/docview/1936539725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 51 2017 15 8491 |
allfieldsGer |
PQ20171228 (DE-627)OLC199746330X (DE-599)GBVOLC199746330X (PRQ)p931-65b6c63224dea4889149b45ac1c6313101cd060fd5403c14911e0525b30503820 (KEY)0072627320170000051001508491impactofthermaldecompositiononthermaldesorptionins DE-627 ger DE-627 rakwb eng 050 333.7 DNB Harald Stark verfasserin aut Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions. High resolution Desorption Partitioning Inlets Temperature Impact analysis Thermal decomposition Molecules Decomposition Inlets (topography) Air sampling Carbon dioxide Ionization Volatility Citric acid Reddy L N Yatavelli oth Samantha L Thompson oth Hyungu Kang oth Jordan E Krechmer oth Joel R Kimmel oth Brett B Palm oth Weiwei Hu oth Patrick L Hayes oth Douglas A Day oth Pedro Campuzano-Jost oth Manjula R Canagaratna oth John T Jayne oth Douglas R Worsnop oth Jose L Jimenez oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 51(2017), 15, Seite 8491 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:51 year:2017 number:15 pages:8491 https://search.proquest.com/docview/1936539725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 51 2017 15 8491 |
allfieldsSound |
PQ20171228 (DE-627)OLC199746330X (DE-599)GBVOLC199746330X (PRQ)p931-65b6c63224dea4889149b45ac1c6313101cd060fd5403c14911e0525b30503820 (KEY)0072627320170000051001508491impactofthermaldecompositiononthermaldesorptionins DE-627 ger DE-627 rakwb eng 050 333.7 DNB Harald Stark verfasserin aut Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions. High resolution Desorption Partitioning Inlets Temperature Impact analysis Thermal decomposition Molecules Decomposition Inlets (topography) Air sampling Carbon dioxide Ionization Volatility Citric acid Reddy L N Yatavelli oth Samantha L Thompson oth Hyungu Kang oth Jordan E Krechmer oth Joel R Kimmel oth Brett B Palm oth Weiwei Hu oth Patrick L Hayes oth Douglas A Day oth Pedro Campuzano-Jost oth Manjula R Canagaratna oth John T Jayne oth Douglas R Worsnop oth Jose L Jimenez oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 51(2017), 15, Seite 8491 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:51 year:2017 number:15 pages:8491 https://search.proquest.com/docview/1936539725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 51 2017 15 8491 |
language |
English |
source |
Enthalten in Environmental science & technology 51(2017), 15, Seite 8491 volume:51 year:2017 number:15 pages:8491 |
sourceStr |
Enthalten in Environmental science & technology 51(2017), 15, Seite 8491 volume:51 year:2017 number:15 pages:8491 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High resolution Desorption Partitioning Inlets Temperature Impact analysis Thermal decomposition Molecules Decomposition Inlets (topography) Air sampling Carbon dioxide Ionization Volatility Citric acid |
dewey-raw |
050 |
isfreeaccess_bool |
false |
container_title |
Environmental science & technology |
authorswithroles_txt_mv |
Harald Stark @@aut@@ Reddy L N Yatavelli @@oth@@ Samantha L Thompson @@oth@@ Hyungu Kang @@oth@@ Jordan E Krechmer @@oth@@ Joel R Kimmel @@oth@@ Brett B Palm @@oth@@ Weiwei Hu @@oth@@ Patrick L Hayes @@oth@@ Douglas A Day @@oth@@ Pedro Campuzano-Jost @@oth@@ Manjula R Canagaratna @@oth@@ John T Jayne @@oth@@ Douglas R Worsnop @@oth@@ Jose L Jimenez @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129852457 |
dewey-sort |
250 |
id |
OLC199746330X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199746330X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715073853.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199746330X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199746330X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p931-65b6c63224dea4889149b45ac1c6313101cd060fd5403c14911e0525b30503820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072627320170000051001508491impactofthermaldecompositiononthermaldesorptionins</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">333.7</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Harald Stark</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Desorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partitioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inlets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inlets (topography)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volatility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Citric acid</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Reddy L N Yatavelli</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Samantha L Thompson</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyungu Kang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jordan E Krechmer</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joel R Kimmel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brett B Palm</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiwei Hu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrick L Hayes</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Douglas A Day</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pedro Campuzano-Jost</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manjula R Canagaratna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John T Jayne</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Douglas R Worsnop</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jose L Jimenez</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science & technology</subfield><subfield code="d">Washington, DC : ACS Publ., 1967</subfield><subfield code="g">51(2017), 15, Seite 8491</subfield><subfield code="w">(DE-627)129852457</subfield><subfield code="w">(DE-600)280653-8</subfield><subfield code="w">(DE-576)01515274X</subfield><subfield code="x">0013-936X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:15</subfield><subfield code="g">pages:8491</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1936539725</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2017</subfield><subfield code="e">15</subfield><subfield code="h">8491</subfield></datafield></record></collection>
|
author |
Harald Stark |
spellingShingle |
Harald Stark ddc 050 misc High resolution misc Desorption misc Partitioning misc Inlets misc Temperature misc Impact analysis misc Thermal decomposition misc Molecules misc Decomposition misc Inlets (topography) misc Air sampling misc Carbon dioxide misc Ionization misc Volatility misc Citric acid Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species |
authorStr |
Harald Stark |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129852457 |
format |
Article |
dewey-ones |
050 - General serial publications 333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0013-936X |
topic_title |
050 333.7 DNB Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species High resolution Desorption Partitioning Inlets Temperature Impact analysis Thermal decomposition Molecules Decomposition Inlets (topography) Air sampling Carbon dioxide Ionization Volatility Citric acid |
topic |
ddc 050 misc High resolution misc Desorption misc Partitioning misc Inlets misc Temperature misc Impact analysis misc Thermal decomposition misc Molecules misc Decomposition misc Inlets (topography) misc Air sampling misc Carbon dioxide misc Ionization misc Volatility misc Citric acid |
topic_unstemmed |
ddc 050 misc High resolution misc Desorption misc Partitioning misc Inlets misc Temperature misc Impact analysis misc Thermal decomposition misc Molecules misc Decomposition misc Inlets (topography) misc Air sampling misc Carbon dioxide misc Ionization misc Volatility misc Citric acid |
topic_browse |
ddc 050 misc High resolution misc Desorption misc Partitioning misc Inlets misc Temperature misc Impact analysis misc Thermal decomposition misc Molecules misc Decomposition misc Inlets (topography) misc Air sampling misc Carbon dioxide misc Ionization misc Volatility misc Citric acid |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
r l n y rlny s l t slt h k hk j e k jek j r k jrk b b p bbp w h wh p l h plh d a d dad p c j pcj m r c mrc j t j jtj d r w drw j l j jlj |
hierarchy_parent_title |
Environmental science & technology |
hierarchy_parent_id |
129852457 |
dewey-tens |
050 - Magazines, journals & serials 330 - Economics |
hierarchy_top_title |
Environmental science & technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X |
title |
Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species |
ctrlnum |
(DE-627)OLC199746330X (DE-599)GBVOLC199746330X (PRQ)p931-65b6c63224dea4889149b45ac1c6313101cd060fd5403c14911e0525b30503820 (KEY)0072627320170000051001508491impactofthermaldecompositiononthermaldesorptionins |
title_full |
Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species |
author_sort |
Harald Stark |
journal |
Environmental science & technology |
journalStr |
Environmental science & technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
8491 |
author_browse |
Harald Stark |
container_volume |
51 |
class |
050 333.7 DNB |
format_se |
Aufsätze |
author-letter |
Harald Stark |
dewey-full |
050 333.7 |
title_sort |
impact of thermal decomposition on thermal desorption instruments: advantage of thermogram analysis for quantifying volatility distributions of organic species |
title_auth |
Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species |
abstract |
We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions. |
abstractGer |
We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions. |
abstract_unstemmed |
We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 |
container_issue |
15 |
title_short |
Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species |
url |
https://search.proquest.com/docview/1936539725 |
remote_bool |
false |
author2 |
Reddy L N Yatavelli Samantha L Thompson Hyungu Kang Jordan E Krechmer Joel R Kimmel Brett B Palm Weiwei Hu Patrick L Hayes Douglas A Day Pedro Campuzano-Jost Manjula R Canagaratna John T Jayne Douglas R Worsnop Jose L Jimenez |
author2Str |
Reddy L N Yatavelli Samantha L Thompson Hyungu Kang Jordan E Krechmer Joel R Kimmel Brett B Palm Weiwei Hu Patrick L Hayes Douglas A Day Pedro Campuzano-Jost Manjula R Canagaratna John T Jayne Douglas R Worsnop Jose L Jimenez |
ppnlink |
129852457 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
up_date |
2024-07-04T02:57:59.152Z |
_version_ |
1803615605007319040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199746330X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715073853.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199746330X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199746330X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p931-65b6c63224dea4889149b45ac1c6313101cd060fd5403c14911e0525b30503820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072627320170000051001508491impactofthermaldecompositiononthermaldesorptionins</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">333.7</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Harald Stark</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ~20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Desorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partitioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inlets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inlets (topography)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volatility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Citric acid</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Reddy L N Yatavelli</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Samantha L Thompson</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyungu Kang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jordan E Krechmer</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joel R Kimmel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brett B Palm</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiwei Hu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrick L Hayes</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Douglas A Day</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pedro Campuzano-Jost</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manjula R Canagaratna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John T Jayne</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Douglas R Worsnop</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jose L Jimenez</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science & technology</subfield><subfield code="d">Washington, DC : ACS Publ., 1967</subfield><subfield code="g">51(2017), 15, Seite 8491</subfield><subfield code="w">(DE-627)129852457</subfield><subfield code="w">(DE-600)280653-8</subfield><subfield code="w">(DE-576)01515274X</subfield><subfield code="x">0013-936X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:15</subfield><subfield code="g">pages:8491</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1936539725</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2017</subfield><subfield code="e">15</subfield><subfield code="h">8491</subfield></datafield></record></collection>
|
score |
7.401513 |