Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region
The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous i...
Ausführliche Beschreibung
Autor*in: |
Yoon, Moonseok [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2017 Institute of Navigation |
---|
Übergeordnetes Werk: |
Enthalten in: Navigation - Washington, DC : Inst., 1946, 64(2017), 3, Seite 309-321 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2017 ; number:3 ; pages:309-321 |
Links: |
---|
DOI / URN: |
10.1002/navi.203 |
---|
Katalog-ID: |
OLC199749213X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199749213X | ||
003 | DE-627 | ||
005 | 20230715074039.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/navi.203 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC199749213X | ||
035 | |a (DE-599)GBVOLC199749213X | ||
035 | |a (PRQ)p1033-d54d7fe9be4f6727d7b12ef612959a4311ac06e3583c52615e0b567f474c31570 | ||
035 | |a (KEY)0074264320170000064000300309equatorialplasmabubblethreatparameterizationtosupp | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 520 |a 910 |q DNB |
100 | 1 | |a Yoon, Moonseok |e verfasserin |4 aut | |
245 | 1 | 0 | |a Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation | ||
540 | |a Nutzungsrecht: Copyright © 2017 Institute of Navigation | ||
700 | 1 | |a Lee, Jiyun |4 oth | |
700 | 1 | |a Pullen, Sam |4 oth | |
700 | 1 | |a Gillespie, Joseph |4 oth | |
700 | 1 | |a Mathur, Navin |4 oth | |
700 | 1 | |a Cole, Rich |4 oth | |
700 | 1 | |a Souza, Jonas Rodrigues |4 oth | |
700 | 1 | |a Doherty, Patricia |4 oth | |
700 | 1 | |a Pradipta, Rezy |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Navigation |d Washington, DC : Inst., 1946 |g 64(2017), 3, Seite 309-321 |w (DE-627)12936021X |w (DE-600)160675-X |w (DE-576)014732572 |x 0028-1522 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2017 |g number:3 |g pages:309-321 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/navi.203 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/navi.203/abstract |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OPC-ARK | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_264 | ||
912 | |a GBV_ILN_2016 | ||
951 | |a AR | ||
952 | |d 64 |j 2017 |e 3 |h 309-321 |
author_variant |
m y my |
---|---|
matchkey_str |
article:00281522:2017----::qaoillsaubehetaaeeiainouprgaoea |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/navi.203 doi PQ20171125 (DE-627)OLC199749213X (DE-599)GBVOLC199749213X (PRQ)p1033-d54d7fe9be4f6727d7b12ef612959a4311ac06e3583c52615e0b567f474c31570 (KEY)0074264320170000064000300309equatorialplasmabubblethreatparameterizationtosupp DE-627 ger DE-627 rakwb eng 520 910 DNB Yoon, Moonseok verfasserin aut Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation Nutzungsrecht: Copyright © 2017 Institute of Navigation Lee, Jiyun oth Pullen, Sam oth Gillespie, Joseph oth Mathur, Navin oth Cole, Rich oth Souza, Jonas Rodrigues oth Doherty, Patricia oth Pradipta, Rezy oth Enthalten in Navigation Washington, DC : Inst., 1946 64(2017), 3, Seite 309-321 (DE-627)12936021X (DE-600)160675-X (DE-576)014732572 0028-1522 nnns volume:64 year:2017 number:3 pages:309-321 http://dx.doi.org/10.1002/navi.203 Volltext http://onlinelibrary.wiley.com/doi/10.1002/navi.203/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_22 GBV_ILN_70 GBV_ILN_264 GBV_ILN_2016 AR 64 2017 3 309-321 |
spelling |
10.1002/navi.203 doi PQ20171125 (DE-627)OLC199749213X (DE-599)GBVOLC199749213X (PRQ)p1033-d54d7fe9be4f6727d7b12ef612959a4311ac06e3583c52615e0b567f474c31570 (KEY)0074264320170000064000300309equatorialplasmabubblethreatparameterizationtosupp DE-627 ger DE-627 rakwb eng 520 910 DNB Yoon, Moonseok verfasserin aut Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation Nutzungsrecht: Copyright © 2017 Institute of Navigation Lee, Jiyun oth Pullen, Sam oth Gillespie, Joseph oth Mathur, Navin oth Cole, Rich oth Souza, Jonas Rodrigues oth Doherty, Patricia oth Pradipta, Rezy oth Enthalten in Navigation Washington, DC : Inst., 1946 64(2017), 3, Seite 309-321 (DE-627)12936021X (DE-600)160675-X (DE-576)014732572 0028-1522 nnns volume:64 year:2017 number:3 pages:309-321 http://dx.doi.org/10.1002/navi.203 Volltext http://onlinelibrary.wiley.com/doi/10.1002/navi.203/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_22 GBV_ILN_70 GBV_ILN_264 GBV_ILN_2016 AR 64 2017 3 309-321 |
allfields_unstemmed |
10.1002/navi.203 doi PQ20171125 (DE-627)OLC199749213X (DE-599)GBVOLC199749213X (PRQ)p1033-d54d7fe9be4f6727d7b12ef612959a4311ac06e3583c52615e0b567f474c31570 (KEY)0074264320170000064000300309equatorialplasmabubblethreatparameterizationtosupp DE-627 ger DE-627 rakwb eng 520 910 DNB Yoon, Moonseok verfasserin aut Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation Nutzungsrecht: Copyright © 2017 Institute of Navigation Lee, Jiyun oth Pullen, Sam oth Gillespie, Joseph oth Mathur, Navin oth Cole, Rich oth Souza, Jonas Rodrigues oth Doherty, Patricia oth Pradipta, Rezy oth Enthalten in Navigation Washington, DC : Inst., 1946 64(2017), 3, Seite 309-321 (DE-627)12936021X (DE-600)160675-X (DE-576)014732572 0028-1522 nnns volume:64 year:2017 number:3 pages:309-321 http://dx.doi.org/10.1002/navi.203 Volltext http://onlinelibrary.wiley.com/doi/10.1002/navi.203/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_22 GBV_ILN_70 GBV_ILN_264 GBV_ILN_2016 AR 64 2017 3 309-321 |
allfieldsGer |
10.1002/navi.203 doi PQ20171125 (DE-627)OLC199749213X (DE-599)GBVOLC199749213X (PRQ)p1033-d54d7fe9be4f6727d7b12ef612959a4311ac06e3583c52615e0b567f474c31570 (KEY)0074264320170000064000300309equatorialplasmabubblethreatparameterizationtosupp DE-627 ger DE-627 rakwb eng 520 910 DNB Yoon, Moonseok verfasserin aut Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation Nutzungsrecht: Copyright © 2017 Institute of Navigation Lee, Jiyun oth Pullen, Sam oth Gillespie, Joseph oth Mathur, Navin oth Cole, Rich oth Souza, Jonas Rodrigues oth Doherty, Patricia oth Pradipta, Rezy oth Enthalten in Navigation Washington, DC : Inst., 1946 64(2017), 3, Seite 309-321 (DE-627)12936021X (DE-600)160675-X (DE-576)014732572 0028-1522 nnns volume:64 year:2017 number:3 pages:309-321 http://dx.doi.org/10.1002/navi.203 Volltext http://onlinelibrary.wiley.com/doi/10.1002/navi.203/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_22 GBV_ILN_70 GBV_ILN_264 GBV_ILN_2016 AR 64 2017 3 309-321 |
allfieldsSound |
10.1002/navi.203 doi PQ20171125 (DE-627)OLC199749213X (DE-599)GBVOLC199749213X (PRQ)p1033-d54d7fe9be4f6727d7b12ef612959a4311ac06e3583c52615e0b567f474c31570 (KEY)0074264320170000064000300309equatorialplasmabubblethreatparameterizationtosupp DE-627 ger DE-627 rakwb eng 520 910 DNB Yoon, Moonseok verfasserin aut Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation Nutzungsrecht: Copyright © 2017 Institute of Navigation Lee, Jiyun oth Pullen, Sam oth Gillespie, Joseph oth Mathur, Navin oth Cole, Rich oth Souza, Jonas Rodrigues oth Doherty, Patricia oth Pradipta, Rezy oth Enthalten in Navigation Washington, DC : Inst., 1946 64(2017), 3, Seite 309-321 (DE-627)12936021X (DE-600)160675-X (DE-576)014732572 0028-1522 nnns volume:64 year:2017 number:3 pages:309-321 http://dx.doi.org/10.1002/navi.203 Volltext http://onlinelibrary.wiley.com/doi/10.1002/navi.203/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_22 GBV_ILN_70 GBV_ILN_264 GBV_ILN_2016 AR 64 2017 3 309-321 |
language |
English |
source |
Enthalten in Navigation 64(2017), 3, Seite 309-321 volume:64 year:2017 number:3 pages:309-321 |
sourceStr |
Enthalten in Navigation 64(2017), 3, Seite 309-321 volume:64 year:2017 number:3 pages:309-321 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
Navigation |
authorswithroles_txt_mv |
Yoon, Moonseok @@aut@@ Lee, Jiyun @@oth@@ Pullen, Sam @@oth@@ Gillespie, Joseph @@oth@@ Mathur, Navin @@oth@@ Cole, Rich @@oth@@ Souza, Jonas Rodrigues @@oth@@ Doherty, Patricia @@oth@@ Pradipta, Rezy @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
12936021X |
dewey-sort |
3520 |
id |
OLC199749213X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199749213X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715074039.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/navi.203</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199749213X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199749213X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1033-d54d7fe9be4f6727d7b12ef612959a4311ac06e3583c52615e0b567f474c31570</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0074264320170000064000300309equatorialplasmabubblethreatparameterizationtosupp</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">910</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoon, Moonseok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 Institute of Navigation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Jiyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pullen, Sam</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gillespie, Joseph</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mathur, Navin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cole, Rich</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Souza, Jonas Rodrigues</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doherty, Patricia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pradipta, Rezy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Navigation</subfield><subfield code="d">Washington, DC : Inst., 1946</subfield><subfield code="g">64(2017), 3, Seite 309-321</subfield><subfield code="w">(DE-627)12936021X</subfield><subfield code="w">(DE-600)160675-X</subfield><subfield code="w">(DE-576)014732572</subfield><subfield code="x">0028-1522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:309-321</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/navi.203</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/navi.203/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ARK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_264</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">309-321</subfield></datafield></record></collection>
|
author |
Yoon, Moonseok |
spellingShingle |
Yoon, Moonseok ddc 520 Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region |
authorStr |
Yoon, Moonseok |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12936021X |
format |
Article |
dewey-ones |
520 - Astronomy & allied sciences 910 - Geography & travel |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0028-1522 |
topic_title |
520 910 DNB Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region |
topic |
ddc 520 |
topic_unstemmed |
ddc 520 |
topic_browse |
ddc 520 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j l jl s p sp j g jg n m nm r c rc j r s jr jrs p d pd r p rp |
hierarchy_parent_title |
Navigation |
hierarchy_parent_id |
12936021X |
dewey-tens |
520 - Astronomy 910 - Geography & travel |
hierarchy_top_title |
Navigation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12936021X (DE-600)160675-X (DE-576)014732572 |
title |
Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region |
ctrlnum |
(DE-627)OLC199749213X (DE-599)GBVOLC199749213X (PRQ)p1033-d54d7fe9be4f6727d7b12ef612959a4311ac06e3583c52615e0b567f474c31570 (KEY)0074264320170000064000300309equatorialplasmabubblethreatparameterizationtosupp |
title_full |
Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region |
author_sort |
Yoon, Moonseok |
journal |
Navigation |
journalStr |
Navigation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 900 - History & geography |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
309 |
author_browse |
Yoon, Moonseok |
container_volume |
64 |
class |
520 910 DNB |
format_se |
Aufsätze |
author-letter |
Yoon, Moonseok |
doi_str_mv |
10.1002/navi.203 |
dewey-full |
520 910 |
title_sort |
equatorial plasma bubble threat parameterization to support gbas operations in the brazilian region |
title_auth |
Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region |
abstract |
The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation |
abstractGer |
The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation |
abstract_unstemmed |
The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OPC-ARK GBV_ILN_22 GBV_ILN_70 GBV_ILN_264 GBV_ILN_2016 |
container_issue |
3 |
title_short |
Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region |
url |
http://dx.doi.org/10.1002/navi.203 http://onlinelibrary.wiley.com/doi/10.1002/navi.203/abstract |
remote_bool |
false |
author2 |
Lee, Jiyun Pullen, Sam Gillespie, Joseph Mathur, Navin Cole, Rich Souza, Jonas Rodrigues Doherty, Patricia Pradipta, Rezy |
author2Str |
Lee, Jiyun Pullen, Sam Gillespie, Joseph Mathur, Navin Cole, Rich Souza, Jonas Rodrigues Doherty, Patricia Pradipta, Rezy |
ppnlink |
12936021X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1002/navi.203 |
up_date |
2024-07-04T03:02:23.239Z |
_version_ |
1803615881923657728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199749213X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715074039.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/navi.203</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199749213X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199749213X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1033-d54d7fe9be4f6727d7b12ef612959a4311ac06e3583c52615e0b567f474c31570</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0074264320170000064000300309equatorialplasmabubblethreatparameterizationtosupp</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">910</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoon, Moonseok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equatorial Plasma Bubble Threat Parameterization to Support GBAS Operations in the Brazilian Region</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Brazil ionospheric study project aims to develop a new ground‐based augmentation system (GBAS) ionospheric threat model to better reflect Brazil's low‐latitude conditions. Data processing from the global navigation satellite system for 123 active ionospheric days identified 1017 anomalous ionospheric gradients caused by nighttime equatorial plasma bubbles (EPBs). A significant number of gradients, including the largest verified gradient of 850.7 mm/km, exceed the upper bound (375–425 mm/km) of the conterminous United States (CONUS) threat model. This paper defines a series of parameters to model the geometry of EPBs. A maximum ionospheric delay drop of 35 m and a transition zone between 20 and 450 km are estimated for EPBs that move roughly eastward and parallel to the geomagnetic equator with speeds between 40 and 250 m/s. These parameters are key to the development of a GBAS ionospheric mitigation and safety case for operational approval in Brazil and other low‐latitude locations. Copyright © 2017 Institute of Navigation</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 Institute of Navigation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Jiyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pullen, Sam</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gillespie, Joseph</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mathur, Navin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cole, Rich</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Souza, Jonas Rodrigues</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doherty, Patricia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pradipta, Rezy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Navigation</subfield><subfield code="d">Washington, DC : Inst., 1946</subfield><subfield code="g">64(2017), 3, Seite 309-321</subfield><subfield code="w">(DE-627)12936021X</subfield><subfield code="w">(DE-600)160675-X</subfield><subfield code="w">(DE-576)014732572</subfield><subfield code="x">0028-1522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:309-321</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/navi.203</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/navi.203/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ARK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_264</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">309-321</subfield></datafield></record></collection>
|
score |
7.3985558 |