Highly coherent visible dispersive wave radiation in suspended core fibers
Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by num...
Ausführliche Beschreibung
Autor*in: |
Bi, Wanjun [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © Author(s) |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of applied physics - Melville, NY : AIP, 1937, 122(2017), 15 |
---|---|
Übergeordnetes Werk: |
volume:122 ; year:2017 ; number:15 |
Links: |
---|
DOI / URN: |
10.1063/1.5000396 |
---|
Katalog-ID: |
OLC1997524996 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997524996 | ||
003 | DE-627 | ||
005 | 20230715074204.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1063/1.5000396 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1997524996 | ||
035 | |a (DE-599)GBVOLC1997524996 | ||
035 | |a (PRQ)scitation_primary_10_1063_1_50003960 | ||
035 | |a (KEY)0076740920170000122001500000highlycoherentvisibledispersivewaveradiationinsusp | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
100 | 1 | |a Bi, Wanjun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Highly coherent visible dispersive wave radiation in suspended core fibers |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed. | ||
540 | |a Nutzungsrecht: © Author(s) | ||
700 | 1 | |a Liao, Meisong |4 oth | |
700 | 1 | |a Liu, Yinyao |4 oth | |
700 | 1 | |a Wu, Dakun |4 oth | |
700 | 1 | |a Li, Xia |4 oth | |
700 | 1 | |a Fang, Yongzheng |4 oth | |
700 | 1 | |a Zhao, Guoying |4 oth | |
700 | 1 | |a Li, Yigui |4 oth | |
700 | 1 | |a Wang, Meng |4 oth | |
700 | 1 | |a Zhang, Longping |4 oth | |
700 | 1 | |a Gao, Weiqing |4 oth | |
700 | 1 | |a Hu, Lili |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of applied physics |d Melville, NY : AIP, 1937 |g 122(2017), 15 |w (DE-627)129079030 |w (DE-600)3112-4 |w (DE-576)014411652 |x 0021-8979 |7 nnns |
773 | 1 | 8 | |g volume:122 |g year:2017 |g number:15 |
856 | 4 | 1 | |u http://dx.doi.org/10.1063/1.5000396 |3 Volltext |
856 | 4 | 2 | |u http://dx.doi.org/10.1063/1.5000396 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 122 |j 2017 |e 15 |
author_variant |
w b wb |
---|---|
matchkey_str |
article:00218979:2017----::ihyoeetiildsesvwvrdainnu |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1063/1.5000396 doi PQ20171228 (DE-627)OLC1997524996 (DE-599)GBVOLC1997524996 (PRQ)scitation_primary_10_1063_1_50003960 (KEY)0076740920170000122001500000highlycoherentvisibledispersivewaveradiationinsusp DE-627 ger DE-627 rakwb eng 530 DE-600 Bi, Wanjun verfasserin aut Highly coherent visible dispersive wave radiation in suspended core fibers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed. Nutzungsrecht: © Author(s) Liao, Meisong oth Liu, Yinyao oth Wu, Dakun oth Li, Xia oth Fang, Yongzheng oth Zhao, Guoying oth Li, Yigui oth Wang, Meng oth Zhang, Longping oth Gao, Weiqing oth Hu, Lili oth Enthalten in Journal of applied physics Melville, NY : AIP, 1937 122(2017), 15 (DE-627)129079030 (DE-600)3112-4 (DE-576)014411652 0021-8979 nnns volume:122 year:2017 number:15 http://dx.doi.org/10.1063/1.5000396 Volltext http://dx.doi.org/10.1063/1.5000396 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2279 GBV_ILN_4319 AR 122 2017 15 |
spelling |
10.1063/1.5000396 doi PQ20171228 (DE-627)OLC1997524996 (DE-599)GBVOLC1997524996 (PRQ)scitation_primary_10_1063_1_50003960 (KEY)0076740920170000122001500000highlycoherentvisibledispersivewaveradiationinsusp DE-627 ger DE-627 rakwb eng 530 DE-600 Bi, Wanjun verfasserin aut Highly coherent visible dispersive wave radiation in suspended core fibers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed. Nutzungsrecht: © Author(s) Liao, Meisong oth Liu, Yinyao oth Wu, Dakun oth Li, Xia oth Fang, Yongzheng oth Zhao, Guoying oth Li, Yigui oth Wang, Meng oth Zhang, Longping oth Gao, Weiqing oth Hu, Lili oth Enthalten in Journal of applied physics Melville, NY : AIP, 1937 122(2017), 15 (DE-627)129079030 (DE-600)3112-4 (DE-576)014411652 0021-8979 nnns volume:122 year:2017 number:15 http://dx.doi.org/10.1063/1.5000396 Volltext http://dx.doi.org/10.1063/1.5000396 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2279 GBV_ILN_4319 AR 122 2017 15 |
allfields_unstemmed |
10.1063/1.5000396 doi PQ20171228 (DE-627)OLC1997524996 (DE-599)GBVOLC1997524996 (PRQ)scitation_primary_10_1063_1_50003960 (KEY)0076740920170000122001500000highlycoherentvisibledispersivewaveradiationinsusp DE-627 ger DE-627 rakwb eng 530 DE-600 Bi, Wanjun verfasserin aut Highly coherent visible dispersive wave radiation in suspended core fibers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed. Nutzungsrecht: © Author(s) Liao, Meisong oth Liu, Yinyao oth Wu, Dakun oth Li, Xia oth Fang, Yongzheng oth Zhao, Guoying oth Li, Yigui oth Wang, Meng oth Zhang, Longping oth Gao, Weiqing oth Hu, Lili oth Enthalten in Journal of applied physics Melville, NY : AIP, 1937 122(2017), 15 (DE-627)129079030 (DE-600)3112-4 (DE-576)014411652 0021-8979 nnns volume:122 year:2017 number:15 http://dx.doi.org/10.1063/1.5000396 Volltext http://dx.doi.org/10.1063/1.5000396 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2279 GBV_ILN_4319 AR 122 2017 15 |
allfieldsGer |
10.1063/1.5000396 doi PQ20171228 (DE-627)OLC1997524996 (DE-599)GBVOLC1997524996 (PRQ)scitation_primary_10_1063_1_50003960 (KEY)0076740920170000122001500000highlycoherentvisibledispersivewaveradiationinsusp DE-627 ger DE-627 rakwb eng 530 DE-600 Bi, Wanjun verfasserin aut Highly coherent visible dispersive wave radiation in suspended core fibers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed. Nutzungsrecht: © Author(s) Liao, Meisong oth Liu, Yinyao oth Wu, Dakun oth Li, Xia oth Fang, Yongzheng oth Zhao, Guoying oth Li, Yigui oth Wang, Meng oth Zhang, Longping oth Gao, Weiqing oth Hu, Lili oth Enthalten in Journal of applied physics Melville, NY : AIP, 1937 122(2017), 15 (DE-627)129079030 (DE-600)3112-4 (DE-576)014411652 0021-8979 nnns volume:122 year:2017 number:15 http://dx.doi.org/10.1063/1.5000396 Volltext http://dx.doi.org/10.1063/1.5000396 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2279 GBV_ILN_4319 AR 122 2017 15 |
allfieldsSound |
10.1063/1.5000396 doi PQ20171228 (DE-627)OLC1997524996 (DE-599)GBVOLC1997524996 (PRQ)scitation_primary_10_1063_1_50003960 (KEY)0076740920170000122001500000highlycoherentvisibledispersivewaveradiationinsusp DE-627 ger DE-627 rakwb eng 530 DE-600 Bi, Wanjun verfasserin aut Highly coherent visible dispersive wave radiation in suspended core fibers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed. Nutzungsrecht: © Author(s) Liao, Meisong oth Liu, Yinyao oth Wu, Dakun oth Li, Xia oth Fang, Yongzheng oth Zhao, Guoying oth Li, Yigui oth Wang, Meng oth Zhang, Longping oth Gao, Weiqing oth Hu, Lili oth Enthalten in Journal of applied physics Melville, NY : AIP, 1937 122(2017), 15 (DE-627)129079030 (DE-600)3112-4 (DE-576)014411652 0021-8979 nnns volume:122 year:2017 number:15 http://dx.doi.org/10.1063/1.5000396 Volltext http://dx.doi.org/10.1063/1.5000396 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2279 GBV_ILN_4319 AR 122 2017 15 |
language |
English |
source |
Enthalten in Journal of applied physics 122(2017), 15 volume:122 year:2017 number:15 |
sourceStr |
Enthalten in Journal of applied physics 122(2017), 15 volume:122 year:2017 number:15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of applied physics |
authorswithroles_txt_mv |
Bi, Wanjun @@aut@@ Liao, Meisong @@oth@@ Liu, Yinyao @@oth@@ Wu, Dakun @@oth@@ Li, Xia @@oth@@ Fang, Yongzheng @@oth@@ Zhao, Guoying @@oth@@ Li, Yigui @@oth@@ Wang, Meng @@oth@@ Zhang, Longping @@oth@@ Gao, Weiqing @@oth@@ Hu, Lili @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129079030 |
dewey-sort |
3530 |
id |
OLC1997524996 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997524996</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715074204.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.5000396</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997524996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997524996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)scitation_primary_10_1063_1_50003960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0076740920170000122001500000highlycoherentvisibledispersivewaveradiationinsusp</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bi, Wanjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly coherent visible dispersive wave radiation in suspended core fibers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Author(s)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Meisong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yinyao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Dakun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Yongzheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Guoying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yigui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Meng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Longping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Weiqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Lili</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied physics</subfield><subfield code="d">Melville, NY : AIP, 1937</subfield><subfield code="g">122(2017), 15</subfield><subfield code="w">(DE-627)129079030</subfield><subfield code="w">(DE-600)3112-4</subfield><subfield code="w">(DE-576)014411652</subfield><subfield code="x">0021-8979</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:122</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:15</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.5000396</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.5000396</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">122</subfield><subfield code="j">2017</subfield><subfield code="e">15</subfield></datafield></record></collection>
|
author |
Bi, Wanjun |
spellingShingle |
Bi, Wanjun ddc 530 Highly coherent visible dispersive wave radiation in suspended core fibers |
authorStr |
Bi, Wanjun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129079030 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0021-8979 |
topic_title |
530 DE-600 Highly coherent visible dispersive wave radiation in suspended core fibers |
topic |
ddc 530 |
topic_unstemmed |
ddc 530 |
topic_browse |
ddc 530 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m l ml y l yl d w dw x l xl y f yf g z gz y l yl m w mw l z lz w g wg l h lh |
hierarchy_parent_title |
Journal of applied physics |
hierarchy_parent_id |
129079030 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of applied physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129079030 (DE-600)3112-4 (DE-576)014411652 |
title |
Highly coherent visible dispersive wave radiation in suspended core fibers |
ctrlnum |
(DE-627)OLC1997524996 (DE-599)GBVOLC1997524996 (PRQ)scitation_primary_10_1063_1_50003960 (KEY)0076740920170000122001500000highlycoherentvisibledispersivewaveradiationinsusp |
title_full |
Highly coherent visible dispersive wave radiation in suspended core fibers |
author_sort |
Bi, Wanjun |
journal |
Journal of applied physics |
journalStr |
Journal of applied physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Bi, Wanjun |
container_volume |
122 |
class |
530 DE-600 |
format_se |
Aufsätze |
author-letter |
Bi, Wanjun |
doi_str_mv |
10.1063/1.5000396 |
dewey-full |
530 |
title_sort |
highly coherent visible dispersive wave radiation in suspended core fibers |
title_auth |
Highly coherent visible dispersive wave radiation in suspended core fibers |
abstract |
Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed. |
abstractGer |
Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed. |
abstract_unstemmed |
Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2279 GBV_ILN_4319 |
container_issue |
15 |
title_short |
Highly coherent visible dispersive wave radiation in suspended core fibers |
url |
http://dx.doi.org/10.1063/1.5000396 |
remote_bool |
false |
author2 |
Liao, Meisong Liu, Yinyao Wu, Dakun Li, Xia Fang, Yongzheng Zhao, Guoying Li, Yigui Wang, Meng Zhang, Longping Gao, Weiqing Hu, Lili |
author2Str |
Liao, Meisong Liu, Yinyao Wu, Dakun Li, Xia Fang, Yongzheng Zhao, Guoying Li, Yigui Wang, Meng Zhang, Longping Gao, Weiqing Hu, Lili |
ppnlink |
129079030 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1063/1.5000396 |
up_date |
2024-07-04T03:06:03.685Z |
_version_ |
1803616113079091200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997524996</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715074204.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.5000396</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997524996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997524996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)scitation_primary_10_1063_1_50003960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0076740920170000122001500000highlycoherentvisibledispersivewaveradiationinsusp</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bi, Wanjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly coherent visible dispersive wave radiation in suspended core fibers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Visible dispersive wave (DW) generation is used in several applications, such as in dispersion measurements, fluorescence microscopy, and biomedicine. The effects of fiber characteristics, pump pulse width, and average pump power on DW generation are investigated in suspended core fiber (SCF) by numerical simulation. The coherence of visible DW is high in all cases. The dynamics behind DW generation are analyzed based on pulse evolution spectrograms. Energy exchange between DW and soliton occurs mainly in the first contraction of the first emitted soliton. Numerical simulations using experimental parameters indicate that the DW can be compressed down to approximately 40 fs. In experiments, under the pump pulse with a pulse width of 50 fs and pump wavelength of 1 μm, an isolated DW is generated at ∼480 nm in SCF1 featuring a large fiber core. Under the same pump conditions, isolated DWs at ∼466 nm and ∼485 nm with full width at half maximum of ∼40 nm and conversion efficiency of ∼10% are achieved in SCF2 with a small fiber core. The coherence of DW is better than that of the infrared component based on the comparisons of the pulse trains of DW and the infrared component in supercontinuum. The influence of OH− content on DW generation is also experimentally analyzed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Author(s)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Meisong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yinyao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Dakun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Yongzheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Guoying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yigui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Meng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Longping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Weiqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Lili</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied physics</subfield><subfield code="d">Melville, NY : AIP, 1937</subfield><subfield code="g">122(2017), 15</subfield><subfield code="w">(DE-627)129079030</subfield><subfield code="w">(DE-600)3112-4</subfield><subfield code="w">(DE-576)014411652</subfield><subfield code="x">0021-8979</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:122</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:15</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.5000396</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.5000396</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">122</subfield><subfield code="j">2017</subfield><subfield code="e">15</subfield></datafield></record></collection>
|
score |
7.401039 |