Movable Noncontact RF Current Measurement on a PCB Trace
This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a micros...
Ausführliche Beschreibung
Autor*in: |
Qiu, Haimi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on instrumentation and measurement - New York, NY, 1963, 66(2017), 9, Seite 2464-2473 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2017 ; number:9 ; pages:2464-2473 |
Links: |
---|
DOI / URN: |
10.1109/TIM.2017.2698900 |
---|
Katalog-ID: |
OLC1997545063 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997545063 | ||
003 | DE-627 | ||
005 | 20220221042252.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIM.2017.2698900 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC1997545063 | ||
035 | |a (DE-599)GBVOLC1997545063 | ||
035 | |a (PRQ)i657-b05b99f2a9b2e5a022cefbd98e5d74069431bb714012c9c388d02e58916b34b90 | ||
035 | |a (KEY)0079426020170000066000902464movablenoncontactrfcurrentmeasurementonapcbtrace | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 50.21 |2 bkl | ||
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Qiu, Haimi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Movable Noncontact RF Current Measurement on a PCB Trace |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement. | ||
650 | 4 | |a Radio frequency | |
650 | 4 | |a Frequency measurement | |
650 | 4 | |a Impedance | |
650 | 4 | |a radio frequency (RF) current measurement | |
650 | 4 | |a Sensors | |
650 | 4 | |a Microstrip | |
650 | 4 | |a Probes | |
650 | 4 | |a noncontact | |
650 | 4 | |a Current measurement | |
650 | 4 | |a Movable | |
700 | 1 | |a Fang, Wenxiao |4 oth | |
700 | 1 | |a En, Yunfei |4 oth | |
700 | 1 | |a Huang, Yun |4 oth | |
700 | 1 | |a Liu, Yuan |4 oth | |
700 | 1 | |a Lai, Ping |4 oth | |
700 | 1 | |a Chen, Yiqiang |4 oth | |
700 | 1 | |a Shi, Chunlei |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on instrumentation and measurement |d New York, NY, 1963 |g 66(2017), 9, Seite 2464-2473 |w (DE-627)129358576 |w (DE-600)160442-9 |w (DE-576)014730863 |x 0018-9456 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2017 |g number:9 |g pages:2464-2473 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIM.2017.2698900 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7932484 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2061 | ||
936 | b | k | |a 50.21 |q AVZ |
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 66 |j 2017 |e 9 |h 2464-2473 |
author_variant |
h q hq |
---|---|
matchkey_str |
article:00189456:2017----::oalnnotcrcretesrmn |
hierarchy_sort_str |
2017 |
bklnumber |
50.21 53.00 |
publishDate |
2017 |
allfields |
10.1109/TIM.2017.2698900 doi PQ20171125 (DE-627)OLC1997545063 (DE-599)GBVOLC1997545063 (PRQ)i657-b05b99f2a9b2e5a022cefbd98e5d74069431bb714012c9c388d02e58916b34b90 (KEY)0079426020170000066000902464movablenoncontactrfcurrentmeasurementonapcbtrace DE-627 ger DE-627 rakwb eng 620 DE-600 50.21 bkl 53.00 bkl Qiu, Haimi verfasserin aut Movable Noncontact RF Current Measurement on a PCB Trace 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement. Radio frequency Frequency measurement Impedance radio frequency (RF) current measurement Sensors Microstrip Probes noncontact Current measurement Movable Fang, Wenxiao oth En, Yunfei oth Huang, Yun oth Liu, Yuan oth Lai, Ping oth Chen, Yiqiang oth Shi, Chunlei oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 9, Seite 2464-2473 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:9 pages:2464-2473 http://dx.doi.org/10.1109/TIM.2017.2698900 Volltext http://ieeexplore.ieee.org/document/7932484 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 9 2464-2473 |
spelling |
10.1109/TIM.2017.2698900 doi PQ20171125 (DE-627)OLC1997545063 (DE-599)GBVOLC1997545063 (PRQ)i657-b05b99f2a9b2e5a022cefbd98e5d74069431bb714012c9c388d02e58916b34b90 (KEY)0079426020170000066000902464movablenoncontactrfcurrentmeasurementonapcbtrace DE-627 ger DE-627 rakwb eng 620 DE-600 50.21 bkl 53.00 bkl Qiu, Haimi verfasserin aut Movable Noncontact RF Current Measurement on a PCB Trace 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement. Radio frequency Frequency measurement Impedance radio frequency (RF) current measurement Sensors Microstrip Probes noncontact Current measurement Movable Fang, Wenxiao oth En, Yunfei oth Huang, Yun oth Liu, Yuan oth Lai, Ping oth Chen, Yiqiang oth Shi, Chunlei oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 9, Seite 2464-2473 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:9 pages:2464-2473 http://dx.doi.org/10.1109/TIM.2017.2698900 Volltext http://ieeexplore.ieee.org/document/7932484 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 9 2464-2473 |
allfields_unstemmed |
10.1109/TIM.2017.2698900 doi PQ20171125 (DE-627)OLC1997545063 (DE-599)GBVOLC1997545063 (PRQ)i657-b05b99f2a9b2e5a022cefbd98e5d74069431bb714012c9c388d02e58916b34b90 (KEY)0079426020170000066000902464movablenoncontactrfcurrentmeasurementonapcbtrace DE-627 ger DE-627 rakwb eng 620 DE-600 50.21 bkl 53.00 bkl Qiu, Haimi verfasserin aut Movable Noncontact RF Current Measurement on a PCB Trace 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement. Radio frequency Frequency measurement Impedance radio frequency (RF) current measurement Sensors Microstrip Probes noncontact Current measurement Movable Fang, Wenxiao oth En, Yunfei oth Huang, Yun oth Liu, Yuan oth Lai, Ping oth Chen, Yiqiang oth Shi, Chunlei oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 9, Seite 2464-2473 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:9 pages:2464-2473 http://dx.doi.org/10.1109/TIM.2017.2698900 Volltext http://ieeexplore.ieee.org/document/7932484 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 9 2464-2473 |
allfieldsGer |
10.1109/TIM.2017.2698900 doi PQ20171125 (DE-627)OLC1997545063 (DE-599)GBVOLC1997545063 (PRQ)i657-b05b99f2a9b2e5a022cefbd98e5d74069431bb714012c9c388d02e58916b34b90 (KEY)0079426020170000066000902464movablenoncontactrfcurrentmeasurementonapcbtrace DE-627 ger DE-627 rakwb eng 620 DE-600 50.21 bkl 53.00 bkl Qiu, Haimi verfasserin aut Movable Noncontact RF Current Measurement on a PCB Trace 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement. Radio frequency Frequency measurement Impedance radio frequency (RF) current measurement Sensors Microstrip Probes noncontact Current measurement Movable Fang, Wenxiao oth En, Yunfei oth Huang, Yun oth Liu, Yuan oth Lai, Ping oth Chen, Yiqiang oth Shi, Chunlei oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 9, Seite 2464-2473 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:9 pages:2464-2473 http://dx.doi.org/10.1109/TIM.2017.2698900 Volltext http://ieeexplore.ieee.org/document/7932484 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 9 2464-2473 |
allfieldsSound |
10.1109/TIM.2017.2698900 doi PQ20171125 (DE-627)OLC1997545063 (DE-599)GBVOLC1997545063 (PRQ)i657-b05b99f2a9b2e5a022cefbd98e5d74069431bb714012c9c388d02e58916b34b90 (KEY)0079426020170000066000902464movablenoncontactrfcurrentmeasurementonapcbtrace DE-627 ger DE-627 rakwb eng 620 DE-600 50.21 bkl 53.00 bkl Qiu, Haimi verfasserin aut Movable Noncontact RF Current Measurement on a PCB Trace 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement. Radio frequency Frequency measurement Impedance radio frequency (RF) current measurement Sensors Microstrip Probes noncontact Current measurement Movable Fang, Wenxiao oth En, Yunfei oth Huang, Yun oth Liu, Yuan oth Lai, Ping oth Chen, Yiqiang oth Shi, Chunlei oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 9, Seite 2464-2473 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:9 pages:2464-2473 http://dx.doi.org/10.1109/TIM.2017.2698900 Volltext http://ieeexplore.ieee.org/document/7932484 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 9 2464-2473 |
language |
English |
source |
Enthalten in IEEE transactions on instrumentation and measurement 66(2017), 9, Seite 2464-2473 volume:66 year:2017 number:9 pages:2464-2473 |
sourceStr |
Enthalten in IEEE transactions on instrumentation and measurement 66(2017), 9, Seite 2464-2473 volume:66 year:2017 number:9 pages:2464-2473 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radio frequency Frequency measurement Impedance radio frequency (RF) current measurement Sensors Microstrip Probes noncontact Current measurement Movable |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on instrumentation and measurement |
authorswithroles_txt_mv |
Qiu, Haimi @@aut@@ Fang, Wenxiao @@oth@@ En, Yunfei @@oth@@ Huang, Yun @@oth@@ Liu, Yuan @@oth@@ Lai, Ping @@oth@@ Chen, Yiqiang @@oth@@ Shi, Chunlei @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129358576 |
dewey-sort |
3620 |
id |
OLC1997545063 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997545063</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221042252.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIM.2017.2698900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997545063</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997545063</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i657-b05b99f2a9b2e5a022cefbd98e5d74069431bb714012c9c388d02e58916b34b90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0079426020170000066000902464movablenoncontactrfcurrentmeasurementonapcbtrace</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qiu, Haimi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Movable Noncontact RF Current Measurement on a PCB Trace</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radio frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radio frequency (RF) current measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstrip</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noncontact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Movable</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Wenxiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">En, Yunfei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Ping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yiqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Chunlei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on instrumentation and measurement</subfield><subfield code="d">New York, NY, 1963</subfield><subfield code="g">66(2017), 9, Seite 2464-2473</subfield><subfield code="w">(DE-627)129358576</subfield><subfield code="w">(DE-600)160442-9</subfield><subfield code="w">(DE-576)014730863</subfield><subfield code="x">0018-9456</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:2464-2473</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIM.2017.2698900</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7932484</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="h">2464-2473</subfield></datafield></record></collection>
|
author |
Qiu, Haimi |
spellingShingle |
Qiu, Haimi ddc 620 bkl 50.21 bkl 53.00 misc Radio frequency misc Frequency measurement misc Impedance misc radio frequency (RF) current measurement misc Sensors misc Microstrip misc Probes misc noncontact misc Current measurement misc Movable Movable Noncontact RF Current Measurement on a PCB Trace |
authorStr |
Qiu, Haimi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358576 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9456 |
topic_title |
620 DE-600 50.21 bkl 53.00 bkl Movable Noncontact RF Current Measurement on a PCB Trace Radio frequency Frequency measurement Impedance radio frequency (RF) current measurement Sensors Microstrip Probes noncontact Current measurement Movable |
topic |
ddc 620 bkl 50.21 bkl 53.00 misc Radio frequency misc Frequency measurement misc Impedance misc radio frequency (RF) current measurement misc Sensors misc Microstrip misc Probes misc noncontact misc Current measurement misc Movable |
topic_unstemmed |
ddc 620 bkl 50.21 bkl 53.00 misc Radio frequency misc Frequency measurement misc Impedance misc radio frequency (RF) current measurement misc Sensors misc Microstrip misc Probes misc noncontact misc Current measurement misc Movable |
topic_browse |
ddc 620 bkl 50.21 bkl 53.00 misc Radio frequency misc Frequency measurement misc Impedance misc radio frequency (RF) current measurement misc Sensors misc Microstrip misc Probes misc noncontact misc Current measurement misc Movable |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
w f wf y e ye y h yh y l yl p l pl y c yc c s cs |
hierarchy_parent_title |
IEEE transactions on instrumentation and measurement |
hierarchy_parent_id |
129358576 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on instrumentation and measurement |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 |
title |
Movable Noncontact RF Current Measurement on a PCB Trace |
ctrlnum |
(DE-627)OLC1997545063 (DE-599)GBVOLC1997545063 (PRQ)i657-b05b99f2a9b2e5a022cefbd98e5d74069431bb714012c9c388d02e58916b34b90 (KEY)0079426020170000066000902464movablenoncontactrfcurrentmeasurementonapcbtrace |
title_full |
Movable Noncontact RF Current Measurement on a PCB Trace |
author_sort |
Qiu, Haimi |
journal |
IEEE transactions on instrumentation and measurement |
journalStr |
IEEE transactions on instrumentation and measurement |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2464 |
author_browse |
Qiu, Haimi |
container_volume |
66 |
class |
620 DE-600 50.21 bkl 53.00 bkl |
format_se |
Aufsätze |
author-letter |
Qiu, Haimi |
doi_str_mv |
10.1109/TIM.2017.2698900 |
dewey-full |
620 |
title_sort |
movable noncontact rf current measurement on a pcb trace |
title_auth |
Movable Noncontact RF Current Measurement on a PCB Trace |
abstract |
This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement. |
abstractGer |
This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement. |
abstract_unstemmed |
This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 |
container_issue |
9 |
title_short |
Movable Noncontact RF Current Measurement on a PCB Trace |
url |
http://dx.doi.org/10.1109/TIM.2017.2698900 http://ieeexplore.ieee.org/document/7932484 |
remote_bool |
false |
author2 |
Fang, Wenxiao En, Yunfei Huang, Yun Liu, Yuan Lai, Ping Chen, Yiqiang Shi, Chunlei |
author2Str |
Fang, Wenxiao En, Yunfei Huang, Yun Liu, Yuan Lai, Ping Chen, Yiqiang Shi, Chunlei |
ppnlink |
129358576 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1109/TIM.2017.2698900 |
up_date |
2024-07-04T03:08:20.380Z |
_version_ |
1803616256407896064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997545063</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221042252.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIM.2017.2698900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997545063</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997545063</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i657-b05b99f2a9b2e5a022cefbd98e5d74069431bb714012c9c388d02e58916b34b90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0079426020170000066000902464movablenoncontactrfcurrentmeasurementonapcbtrace</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qiu, Haimi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Movable Noncontact RF Current Measurement on a PCB Trace</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops a movable noncontact probing method of a radio frequency current on a printed trace based on the electromagnetic induction. The current measurement method is validated by comparing a series of reconstructed periodic and pulse currents with those as known input signals on a microstrip line. According to our measurement, the transfer impedance from the current under measurement to the probe has a linear frequency range from 10 MHz to 2.2 GHz. The reconstruction measurement can be achieved even for a random periodic noise with a duration of 1 ns and a single pulse with a rise time of 2 ns. Owing to the flexible relocation of the probe, the measurement accuracy due to the errors of spatial displacement and the probe placement angle is investigated in detail. It is shown that the dynamic parameters of reconstructed current, such as fall time and rise time, are insensitive to the spatial errors, and instead the amplitudes of both periodic and pulse currents are highly sensitive, especially to a horizontal displacement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radio frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radio frequency (RF) current measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstrip</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noncontact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Movable</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Wenxiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">En, Yunfei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Ping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yiqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Chunlei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on instrumentation and measurement</subfield><subfield code="d">New York, NY, 1963</subfield><subfield code="g">66(2017), 9, Seite 2464-2473</subfield><subfield code="w">(DE-627)129358576</subfield><subfield code="w">(DE-600)160442-9</subfield><subfield code="w">(DE-576)014730863</subfield><subfield code="x">0018-9456</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:2464-2473</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIM.2017.2698900</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7932484</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="h">2464-2473</subfield></datafield></record></collection>
|
score |
7.4001703 |