Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion
Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow...
Ausführliche Beschreibung
Autor*in: |
Ricciardi, Maria Rosaria [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015 Society of Plastics Engineers |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Polymer composites - Manchester, NH : Soc., 1980, 38(2017), 10, Seite 2254-2260 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2017 ; number:10 ; pages:2254-2260 |
Links: |
---|
DOI / URN: |
10.1002/pc.23806 |
---|
Katalog-ID: |
OLC1997646544 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997646544 | ||
003 | DE-627 | ||
005 | 20230715074706.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/pc.23806 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1997646544 | ||
035 | |a (DE-599)GBVOLC1997646544 | ||
035 | |a (PRQ)c1886-c17dcfeb4fce656793ade1b51c64bf0558c5f412c2c3f883e7d018714707944d3 | ||
035 | |a (KEY)0104049920170000038001002254mechanicalbehaviorofhybridfiberreinforcedcomposite | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 660 |q DNB |
100 | 1 | |a Ricciardi, Maria Rosaria |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers | ||
540 | |a Nutzungsrecht: © 2015 Society of Plastics Engineers | ||
650 | 4 | |a Carbon nanotubes | |
650 | 4 | |a Carbon-epoxy composites | |
650 | 4 | |a Infusion | |
650 | 4 | |a Polymer matrix composites | |
650 | 4 | |a Multi wall carbon nanotubes | |
650 | 4 | |a Carbon | |
650 | 4 | |a Nanotubes | |
650 | 4 | |a Interlaminar | |
650 | 4 | |a Carbon fiber reinforced plastics | |
650 | 4 | |a Epoxy resins | |
650 | 4 | |a Fiber reinforced polymers | |
650 | 4 | |a Fiber reinforced plastics | |
650 | 4 | |a Fiber reinforcement | |
650 | 4 | |a Polymers | |
650 | 4 | |a Crack initiation | |
650 | 4 | |a Fracture toughness | |
650 | 4 | |a Mechanical properties | |
650 | 4 | |a Vacuum bags | |
650 | 4 | |a Interfacial shear strength | |
700 | 1 | |a Martone, Alfonso |4 oth | |
700 | 1 | |a Borriello, Anna |4 oth | |
700 | 1 | |a Zarrelli, Mauro |4 oth | |
700 | 1 | |a Giordano, Michele |4 oth | |
700 | 1 | |a Langella, Antonio |4 oth | |
700 | 1 | |a Antonucci, Vincenza |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Polymer composites |d Manchester, NH : Soc., 1980 |g 38(2017), 10, Seite 2254-2260 |w (DE-627)130550345 |w (DE-600)782694-1 |w (DE-576)016107195 |x 0272-8397 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2017 |g number:10 |g pages:2254-2260 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/pc.23806 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/pc.23806/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1955328383 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2016 | ||
951 | |a AR | ||
952 | |d 38 |j 2017 |e 10 |h 2254-2260 |
author_variant |
m r r mr mrr |
---|---|
matchkey_str |
article:02728397:2017----::ehncleairfyrdierifrecmoiemnf |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/pc.23806 doi PQ20171228 (DE-627)OLC1997646544 (DE-599)GBVOLC1997646544 (PRQ)c1886-c17dcfeb4fce656793ade1b51c64bf0558c5f412c2c3f883e7d018714707944d3 (KEY)0104049920170000038001002254mechanicalbehaviorofhybridfiberreinforcedcomposite DE-627 ger DE-627 rakwb eng 540 660 DNB Ricciardi, Maria Rosaria verfasserin aut Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers Nutzungsrecht: © 2015 Society of Plastics Engineers Carbon nanotubes Carbon-epoxy composites Infusion Polymer matrix composites Multi wall carbon nanotubes Carbon Nanotubes Interlaminar Carbon fiber reinforced plastics Epoxy resins Fiber reinforced polymers Fiber reinforced plastics Fiber reinforcement Polymers Crack initiation Fracture toughness Mechanical properties Vacuum bags Interfacial shear strength Martone, Alfonso oth Borriello, Anna oth Zarrelli, Mauro oth Giordano, Michele oth Langella, Antonio oth Antonucci, Vincenza oth Enthalten in Polymer composites Manchester, NH : Soc., 1980 38(2017), 10, Seite 2254-2260 (DE-627)130550345 (DE-600)782694-1 (DE-576)016107195 0272-8397 nnns volume:38 year:2017 number:10 pages:2254-2260 http://dx.doi.org/10.1002/pc.23806 Volltext http://onlinelibrary.wiley.com/doi/10.1002/pc.23806/abstract https://search.proquest.com/docview/1955328383 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_2016 AR 38 2017 10 2254-2260 |
spelling |
10.1002/pc.23806 doi PQ20171228 (DE-627)OLC1997646544 (DE-599)GBVOLC1997646544 (PRQ)c1886-c17dcfeb4fce656793ade1b51c64bf0558c5f412c2c3f883e7d018714707944d3 (KEY)0104049920170000038001002254mechanicalbehaviorofhybridfiberreinforcedcomposite DE-627 ger DE-627 rakwb eng 540 660 DNB Ricciardi, Maria Rosaria verfasserin aut Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers Nutzungsrecht: © 2015 Society of Plastics Engineers Carbon nanotubes Carbon-epoxy composites Infusion Polymer matrix composites Multi wall carbon nanotubes Carbon Nanotubes Interlaminar Carbon fiber reinforced plastics Epoxy resins Fiber reinforced polymers Fiber reinforced plastics Fiber reinforcement Polymers Crack initiation Fracture toughness Mechanical properties Vacuum bags Interfacial shear strength Martone, Alfonso oth Borriello, Anna oth Zarrelli, Mauro oth Giordano, Michele oth Langella, Antonio oth Antonucci, Vincenza oth Enthalten in Polymer composites Manchester, NH : Soc., 1980 38(2017), 10, Seite 2254-2260 (DE-627)130550345 (DE-600)782694-1 (DE-576)016107195 0272-8397 nnns volume:38 year:2017 number:10 pages:2254-2260 http://dx.doi.org/10.1002/pc.23806 Volltext http://onlinelibrary.wiley.com/doi/10.1002/pc.23806/abstract https://search.proquest.com/docview/1955328383 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_2016 AR 38 2017 10 2254-2260 |
allfields_unstemmed |
10.1002/pc.23806 doi PQ20171228 (DE-627)OLC1997646544 (DE-599)GBVOLC1997646544 (PRQ)c1886-c17dcfeb4fce656793ade1b51c64bf0558c5f412c2c3f883e7d018714707944d3 (KEY)0104049920170000038001002254mechanicalbehaviorofhybridfiberreinforcedcomposite DE-627 ger DE-627 rakwb eng 540 660 DNB Ricciardi, Maria Rosaria verfasserin aut Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers Nutzungsrecht: © 2015 Society of Plastics Engineers Carbon nanotubes Carbon-epoxy composites Infusion Polymer matrix composites Multi wall carbon nanotubes Carbon Nanotubes Interlaminar Carbon fiber reinforced plastics Epoxy resins Fiber reinforced polymers Fiber reinforced plastics Fiber reinforcement Polymers Crack initiation Fracture toughness Mechanical properties Vacuum bags Interfacial shear strength Martone, Alfonso oth Borriello, Anna oth Zarrelli, Mauro oth Giordano, Michele oth Langella, Antonio oth Antonucci, Vincenza oth Enthalten in Polymer composites Manchester, NH : Soc., 1980 38(2017), 10, Seite 2254-2260 (DE-627)130550345 (DE-600)782694-1 (DE-576)016107195 0272-8397 nnns volume:38 year:2017 number:10 pages:2254-2260 http://dx.doi.org/10.1002/pc.23806 Volltext http://onlinelibrary.wiley.com/doi/10.1002/pc.23806/abstract https://search.proquest.com/docview/1955328383 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_2016 AR 38 2017 10 2254-2260 |
allfieldsGer |
10.1002/pc.23806 doi PQ20171228 (DE-627)OLC1997646544 (DE-599)GBVOLC1997646544 (PRQ)c1886-c17dcfeb4fce656793ade1b51c64bf0558c5f412c2c3f883e7d018714707944d3 (KEY)0104049920170000038001002254mechanicalbehaviorofhybridfiberreinforcedcomposite DE-627 ger DE-627 rakwb eng 540 660 DNB Ricciardi, Maria Rosaria verfasserin aut Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers Nutzungsrecht: © 2015 Society of Plastics Engineers Carbon nanotubes Carbon-epoxy composites Infusion Polymer matrix composites Multi wall carbon nanotubes Carbon Nanotubes Interlaminar Carbon fiber reinforced plastics Epoxy resins Fiber reinforced polymers Fiber reinforced plastics Fiber reinforcement Polymers Crack initiation Fracture toughness Mechanical properties Vacuum bags Interfacial shear strength Martone, Alfonso oth Borriello, Anna oth Zarrelli, Mauro oth Giordano, Michele oth Langella, Antonio oth Antonucci, Vincenza oth Enthalten in Polymer composites Manchester, NH : Soc., 1980 38(2017), 10, Seite 2254-2260 (DE-627)130550345 (DE-600)782694-1 (DE-576)016107195 0272-8397 nnns volume:38 year:2017 number:10 pages:2254-2260 http://dx.doi.org/10.1002/pc.23806 Volltext http://onlinelibrary.wiley.com/doi/10.1002/pc.23806/abstract https://search.proquest.com/docview/1955328383 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_2016 AR 38 2017 10 2254-2260 |
allfieldsSound |
10.1002/pc.23806 doi PQ20171228 (DE-627)OLC1997646544 (DE-599)GBVOLC1997646544 (PRQ)c1886-c17dcfeb4fce656793ade1b51c64bf0558c5f412c2c3f883e7d018714707944d3 (KEY)0104049920170000038001002254mechanicalbehaviorofhybridfiberreinforcedcomposite DE-627 ger DE-627 rakwb eng 540 660 DNB Ricciardi, Maria Rosaria verfasserin aut Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers Nutzungsrecht: © 2015 Society of Plastics Engineers Carbon nanotubes Carbon-epoxy composites Infusion Polymer matrix composites Multi wall carbon nanotubes Carbon Nanotubes Interlaminar Carbon fiber reinforced plastics Epoxy resins Fiber reinforced polymers Fiber reinforced plastics Fiber reinforcement Polymers Crack initiation Fracture toughness Mechanical properties Vacuum bags Interfacial shear strength Martone, Alfonso oth Borriello, Anna oth Zarrelli, Mauro oth Giordano, Michele oth Langella, Antonio oth Antonucci, Vincenza oth Enthalten in Polymer composites Manchester, NH : Soc., 1980 38(2017), 10, Seite 2254-2260 (DE-627)130550345 (DE-600)782694-1 (DE-576)016107195 0272-8397 nnns volume:38 year:2017 number:10 pages:2254-2260 http://dx.doi.org/10.1002/pc.23806 Volltext http://onlinelibrary.wiley.com/doi/10.1002/pc.23806/abstract https://search.proquest.com/docview/1955328383 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_2016 AR 38 2017 10 2254-2260 |
language |
English |
source |
Enthalten in Polymer composites 38(2017), 10, Seite 2254-2260 volume:38 year:2017 number:10 pages:2254-2260 |
sourceStr |
Enthalten in Polymer composites 38(2017), 10, Seite 2254-2260 volume:38 year:2017 number:10 pages:2254-2260 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbon nanotubes Carbon-epoxy composites Infusion Polymer matrix composites Multi wall carbon nanotubes Carbon Nanotubes Interlaminar Carbon fiber reinforced plastics Epoxy resins Fiber reinforced polymers Fiber reinforced plastics Fiber reinforcement Polymers Crack initiation Fracture toughness Mechanical properties Vacuum bags Interfacial shear strength |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Polymer composites |
authorswithroles_txt_mv |
Ricciardi, Maria Rosaria @@aut@@ Martone, Alfonso @@oth@@ Borriello, Anna @@oth@@ Zarrelli, Mauro @@oth@@ Giordano, Michele @@oth@@ Langella, Antonio @@oth@@ Antonucci, Vincenza @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130550345 |
dewey-sort |
3540 |
id |
OLC1997646544 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997646544</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715074706.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/pc.23806</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997646544</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997646544</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1886-c17dcfeb4fce656793ade1b51c64bf0558c5f412c2c3f883e7d018714707944d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0104049920170000038001002254mechanicalbehaviorofhybridfiberreinforcedcomposite</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ricciardi, Maria Rosaria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Society of Plastics Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon-epoxy composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymer matrix composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi wall carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interlaminar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon fiber reinforced plastics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epoxy resins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber reinforced polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber reinforced plastics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber reinforcement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack initiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture toughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum bags</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interfacial shear strength</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martone, Alfonso</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borriello, Anna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zarrelli, Mauro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giordano, Michele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Langella, Antonio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antonucci, Vincenza</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer composites</subfield><subfield code="d">Manchester, NH : Soc., 1980</subfield><subfield code="g">38(2017), 10, Seite 2254-2260</subfield><subfield code="w">(DE-627)130550345</subfield><subfield code="w">(DE-600)782694-1</subfield><subfield code="w">(DE-576)016107195</subfield><subfield code="x">0272-8397</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2254-2260</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/pc.23806</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/pc.23806/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1955328383</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">2254-2260</subfield></datafield></record></collection>
|
author |
Ricciardi, Maria Rosaria |
spellingShingle |
Ricciardi, Maria Rosaria ddc 540 misc Carbon nanotubes misc Carbon-epoxy composites misc Infusion misc Polymer matrix composites misc Multi wall carbon nanotubes misc Carbon misc Nanotubes misc Interlaminar misc Carbon fiber reinforced plastics misc Epoxy resins misc Fiber reinforced polymers misc Fiber reinforced plastics misc Fiber reinforcement misc Polymers misc Crack initiation misc Fracture toughness misc Mechanical properties misc Vacuum bags misc Interfacial shear strength Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion |
authorStr |
Ricciardi, Maria Rosaria |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130550345 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0272-8397 |
topic_title |
540 660 DNB Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion Carbon nanotubes Carbon-epoxy composites Infusion Polymer matrix composites Multi wall carbon nanotubes Carbon Nanotubes Interlaminar Carbon fiber reinforced plastics Epoxy resins Fiber reinforced polymers Fiber reinforced plastics Fiber reinforcement Polymers Crack initiation Fracture toughness Mechanical properties Vacuum bags Interfacial shear strength |
topic |
ddc 540 misc Carbon nanotubes misc Carbon-epoxy composites misc Infusion misc Polymer matrix composites misc Multi wall carbon nanotubes misc Carbon misc Nanotubes misc Interlaminar misc Carbon fiber reinforced plastics misc Epoxy resins misc Fiber reinforced polymers misc Fiber reinforced plastics misc Fiber reinforcement misc Polymers misc Crack initiation misc Fracture toughness misc Mechanical properties misc Vacuum bags misc Interfacial shear strength |
topic_unstemmed |
ddc 540 misc Carbon nanotubes misc Carbon-epoxy composites misc Infusion misc Polymer matrix composites misc Multi wall carbon nanotubes misc Carbon misc Nanotubes misc Interlaminar misc Carbon fiber reinforced plastics misc Epoxy resins misc Fiber reinforced polymers misc Fiber reinforced plastics misc Fiber reinforcement misc Polymers misc Crack initiation misc Fracture toughness misc Mechanical properties misc Vacuum bags misc Interfacial shear strength |
topic_browse |
ddc 540 misc Carbon nanotubes misc Carbon-epoxy composites misc Infusion misc Polymer matrix composites misc Multi wall carbon nanotubes misc Carbon misc Nanotubes misc Interlaminar misc Carbon fiber reinforced plastics misc Epoxy resins misc Fiber reinforced polymers misc Fiber reinforced plastics misc Fiber reinforcement misc Polymers misc Crack initiation misc Fracture toughness misc Mechanical properties misc Vacuum bags misc Interfacial shear strength |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a m am a b ab m z mz m g mg a l al v a va |
hierarchy_parent_title |
Polymer composites |
hierarchy_parent_id |
130550345 |
dewey-tens |
540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Polymer composites |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130550345 (DE-600)782694-1 (DE-576)016107195 |
title |
Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion |
ctrlnum |
(DE-627)OLC1997646544 (DE-599)GBVOLC1997646544 (PRQ)c1886-c17dcfeb4fce656793ade1b51c64bf0558c5f412c2c3f883e7d018714707944d3 (KEY)0104049920170000038001002254mechanicalbehaviorofhybridfiberreinforcedcomposite |
title_full |
Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion |
author_sort |
Ricciardi, Maria Rosaria |
journal |
Polymer composites |
journalStr |
Polymer composites |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2254 |
author_browse |
Ricciardi, Maria Rosaria |
container_volume |
38 |
class |
540 660 DNB |
format_se |
Aufsätze |
author-letter |
Ricciardi, Maria Rosaria |
doi_str_mv |
10.1002/pc.23806 |
dewey-full |
540 660 |
title_sort |
mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion |
title_auth |
Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion |
abstract |
Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers |
abstractGer |
Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers |
abstract_unstemmed |
Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_2016 |
container_issue |
10 |
title_short |
Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion |
url |
http://dx.doi.org/10.1002/pc.23806 http://onlinelibrary.wiley.com/doi/10.1002/pc.23806/abstract https://search.proquest.com/docview/1955328383 |
remote_bool |
false |
author2 |
Martone, Alfonso Borriello, Anna Zarrelli, Mauro Giordano, Michele Langella, Antonio Antonucci, Vincenza |
author2Str |
Martone, Alfonso Borriello, Anna Zarrelli, Mauro Giordano, Michele Langella, Antonio Antonucci, Vincenza |
ppnlink |
130550345 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1002/pc.23806 |
up_date |
2024-07-04T03:22:10.403Z |
_version_ |
1803617126747996160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997646544</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715074706.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/pc.23806</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997646544</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997646544</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1886-c17dcfeb4fce656793ade1b51c64bf0558c5f412c2c3f883e7d018714707944d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0104049920170000038001002254mechanicalbehaviorofhybridfiberreinforcedcomposite</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ricciardi, Maria Rosaria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanical behavior of hybrid fiber‐reinforced composites manufactured by pulse infusion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Epoxy/carbon fiber composites have been manufactured by Pulse Infusion. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The adopted one‐component commercial epoxy resin has been preliminary modified by adding 0.05% (w/w) of multiwalled carbon nanotubes, in order to take advantage of carbon nanotubes at low concentration. Both neat and hybrid realized composite panels have been mechanically characterized by performing experimental tests to evaluate tensile, interlaminar, and fracture properties in order to investigate the effect of Pulse Infusion and carbon nanotubes on the mechanical and fracture behavior of composites. Results demonstrated an improvement of 36.2% for the interlaminar shear strength, of 35% for the fracture energy at the crack initiation and of 14% for the fracture toughness in mode II. POLYM. COMPOS., 38:2254–2260, 2017. © 2015 Society of Plastics Engineers</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Society of Plastics Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon-epoxy composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymer matrix composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi wall carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interlaminar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon fiber reinforced plastics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epoxy resins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber reinforced polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber reinforced plastics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber reinforcement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack initiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture toughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum bags</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interfacial shear strength</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martone, Alfonso</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borriello, Anna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zarrelli, Mauro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giordano, Michele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Langella, Antonio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antonucci, Vincenza</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer composites</subfield><subfield code="d">Manchester, NH : Soc., 1980</subfield><subfield code="g">38(2017), 10, Seite 2254-2260</subfield><subfield code="w">(DE-627)130550345</subfield><subfield code="w">(DE-600)782694-1</subfield><subfield code="w">(DE-576)016107195</subfield><subfield code="x">0272-8397</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2254-2260</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/pc.23806</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/pc.23806/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1955328383</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">2254-2260</subfield></datafield></record></collection>
|
score |
7.4012203 |