Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012
A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat...
Ausführliche Beschreibung
Autor*in: |
Han, Cunbo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Royal Meteorological Society |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: International journal of climatology - Chichester [u.a.] : Wiley, 1989, 37(2017), 14, Seite 4757-4767 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2017 ; number:14 ; pages:4757-4767 |
Links: |
---|
DOI / URN: |
10.1002/joc.5119 |
---|
Katalog-ID: |
OLC1997651777 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997651777 | ||
003 | DE-627 | ||
005 | 20230715074720.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/joc.5119 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1997651777 | ||
035 | |a (DE-599)GBVOLC1997651777 | ||
035 | |a (PRQ)p1319-8dbd6fc647143b381ede679f3900461be98b714fb753eed562f6c8e8a2b658413 | ||
035 | |a (KEY)0104704320170000037001404757trendsoflandsurfaceheatfluxesonthetibetanplateaufr | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a RA 1000 |q AVZ |2 rvk | ||
100 | 1 | |a Han, Cunbo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient. | ||
540 | |a Nutzungsrecht: © 2017 Royal Meteorological Society | ||
650 | 4 | |a effective roughness length | |
650 | 4 | |a SEBS | |
650 | 4 | |a land surface heat flux trend | |
650 | 4 | |a Tibetan Plateau | |
650 | 4 | |a Net radiation | |
650 | 4 | |a Roughness | |
650 | 4 | |a Sensible heat transfer | |
650 | 4 | |a Glaciers | |
650 | 4 | |a Remote sensing | |
650 | 4 | |a Parameterization | |
650 | 4 | |a Latent heat | |
650 | 4 | |a Air temperature | |
650 | 4 | |a Greening | |
650 | 4 | |a Surface properties | |
650 | 4 | |a Radiation | |
650 | 4 | |a Plateaux | |
650 | 4 | |a Sensible heat flux | |
650 | 4 | |a Sensible heat | |
650 | 4 | |a Rivers | |
650 | 4 | |a Heat flux | |
650 | 4 | |a Enthalpy | |
650 | 4 | |a Temperature (air-sea) | |
650 | 4 | |a Roughness length | |
650 | 4 | |a Radiation balance | |
650 | 4 | |a Temperature | |
650 | 4 | |a Precipitation | |
650 | 4 | |a Temperature differences | |
650 | 4 | |a Radiation flux | |
650 | 4 | |a Heat transfer | |
650 | 4 | |a Surface energy | |
650 | 4 | |a Energy balance | |
650 | 4 | |a Heat | |
650 | 4 | |a Latent heat flux | |
650 | 4 | |a Trends | |
650 | 4 | |a Fluctuations | |
650 | 4 | |a Topsoil | |
650 | 4 | |a Fluxes | |
650 | 4 | |a Parametrization | |
700 | 1 | |a Ma, Yaoming |4 oth | |
700 | 1 | |a Chen, Xuelong |4 oth | |
700 | 1 | |a Su, Zhongbo |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of climatology |d Chichester [u.a.] : Wiley, 1989 |g 37(2017), 14, Seite 4757-4767 |w (DE-627)130763128 |w (DE-600)1000947-4 |w (DE-576)023035773 |x 0899-8418 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2017 |g number:14 |g pages:4757-4767 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/joc.5119 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/joc.5119/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1958507024 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_4311 | ||
936 | r | v | |a RA 1000 |
951 | |a AR | ||
952 | |d 37 |j 2017 |e 14 |h 4757-4767 |
author_variant |
c h ch |
---|---|
matchkey_str |
article:08998418:2017----::rnsfadufchafueoteieapa |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/joc.5119 doi PQ20171228 (DE-627)OLC1997651777 (DE-599)GBVOLC1997651777 (PRQ)p1319-8dbd6fc647143b381ede679f3900461be98b714fb753eed562f6c8e8a2b658413 (KEY)0104704320170000037001404757trendsoflandsurfaceheatfluxesonthetibetanplateaufr DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Han, Cunbo verfasserin aut Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient. Nutzungsrecht: © 2017 Royal Meteorological Society effective roughness length SEBS land surface heat flux trend Tibetan Plateau Net radiation Roughness Sensible heat transfer Glaciers Remote sensing Parameterization Latent heat Air temperature Greening Surface properties Radiation Plateaux Sensible heat flux Sensible heat Rivers Heat flux Enthalpy Temperature (air-sea) Roughness length Radiation balance Temperature Precipitation Temperature differences Radiation flux Heat transfer Surface energy Energy balance Heat Latent heat flux Trends Fluctuations Topsoil Fluxes Parametrization Ma, Yaoming oth Chen, Xuelong oth Su, Zhongbo oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 14, Seite 4757-4767 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:14 pages:4757-4767 http://dx.doi.org/10.1002/joc.5119 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.5119/abstract https://search.proquest.com/docview/1958507024 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 14 4757-4767 |
spelling |
10.1002/joc.5119 doi PQ20171228 (DE-627)OLC1997651777 (DE-599)GBVOLC1997651777 (PRQ)p1319-8dbd6fc647143b381ede679f3900461be98b714fb753eed562f6c8e8a2b658413 (KEY)0104704320170000037001404757trendsoflandsurfaceheatfluxesonthetibetanplateaufr DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Han, Cunbo verfasserin aut Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient. Nutzungsrecht: © 2017 Royal Meteorological Society effective roughness length SEBS land surface heat flux trend Tibetan Plateau Net radiation Roughness Sensible heat transfer Glaciers Remote sensing Parameterization Latent heat Air temperature Greening Surface properties Radiation Plateaux Sensible heat flux Sensible heat Rivers Heat flux Enthalpy Temperature (air-sea) Roughness length Radiation balance Temperature Precipitation Temperature differences Radiation flux Heat transfer Surface energy Energy balance Heat Latent heat flux Trends Fluctuations Topsoil Fluxes Parametrization Ma, Yaoming oth Chen, Xuelong oth Su, Zhongbo oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 14, Seite 4757-4767 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:14 pages:4757-4767 http://dx.doi.org/10.1002/joc.5119 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.5119/abstract https://search.proquest.com/docview/1958507024 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 14 4757-4767 |
allfields_unstemmed |
10.1002/joc.5119 doi PQ20171228 (DE-627)OLC1997651777 (DE-599)GBVOLC1997651777 (PRQ)p1319-8dbd6fc647143b381ede679f3900461be98b714fb753eed562f6c8e8a2b658413 (KEY)0104704320170000037001404757trendsoflandsurfaceheatfluxesonthetibetanplateaufr DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Han, Cunbo verfasserin aut Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient. Nutzungsrecht: © 2017 Royal Meteorological Society effective roughness length SEBS land surface heat flux trend Tibetan Plateau Net radiation Roughness Sensible heat transfer Glaciers Remote sensing Parameterization Latent heat Air temperature Greening Surface properties Radiation Plateaux Sensible heat flux Sensible heat Rivers Heat flux Enthalpy Temperature (air-sea) Roughness length Radiation balance Temperature Precipitation Temperature differences Radiation flux Heat transfer Surface energy Energy balance Heat Latent heat flux Trends Fluctuations Topsoil Fluxes Parametrization Ma, Yaoming oth Chen, Xuelong oth Su, Zhongbo oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 14, Seite 4757-4767 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:14 pages:4757-4767 http://dx.doi.org/10.1002/joc.5119 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.5119/abstract https://search.proquest.com/docview/1958507024 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 14 4757-4767 |
allfieldsGer |
10.1002/joc.5119 doi PQ20171228 (DE-627)OLC1997651777 (DE-599)GBVOLC1997651777 (PRQ)p1319-8dbd6fc647143b381ede679f3900461be98b714fb753eed562f6c8e8a2b658413 (KEY)0104704320170000037001404757trendsoflandsurfaceheatfluxesonthetibetanplateaufr DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Han, Cunbo verfasserin aut Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient. Nutzungsrecht: © 2017 Royal Meteorological Society effective roughness length SEBS land surface heat flux trend Tibetan Plateau Net radiation Roughness Sensible heat transfer Glaciers Remote sensing Parameterization Latent heat Air temperature Greening Surface properties Radiation Plateaux Sensible heat flux Sensible heat Rivers Heat flux Enthalpy Temperature (air-sea) Roughness length Radiation balance Temperature Precipitation Temperature differences Radiation flux Heat transfer Surface energy Energy balance Heat Latent heat flux Trends Fluctuations Topsoil Fluxes Parametrization Ma, Yaoming oth Chen, Xuelong oth Su, Zhongbo oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 14, Seite 4757-4767 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:14 pages:4757-4767 http://dx.doi.org/10.1002/joc.5119 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.5119/abstract https://search.proquest.com/docview/1958507024 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 14 4757-4767 |
allfieldsSound |
10.1002/joc.5119 doi PQ20171228 (DE-627)OLC1997651777 (DE-599)GBVOLC1997651777 (PRQ)p1319-8dbd6fc647143b381ede679f3900461be98b714fb753eed562f6c8e8a2b658413 (KEY)0104704320170000037001404757trendsoflandsurfaceheatfluxesonthetibetanplateaufr DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Han, Cunbo verfasserin aut Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient. Nutzungsrecht: © 2017 Royal Meteorological Society effective roughness length SEBS land surface heat flux trend Tibetan Plateau Net radiation Roughness Sensible heat transfer Glaciers Remote sensing Parameterization Latent heat Air temperature Greening Surface properties Radiation Plateaux Sensible heat flux Sensible heat Rivers Heat flux Enthalpy Temperature (air-sea) Roughness length Radiation balance Temperature Precipitation Temperature differences Radiation flux Heat transfer Surface energy Energy balance Heat Latent heat flux Trends Fluctuations Topsoil Fluxes Parametrization Ma, Yaoming oth Chen, Xuelong oth Su, Zhongbo oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 14, Seite 4757-4767 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:14 pages:4757-4767 http://dx.doi.org/10.1002/joc.5119 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.5119/abstract https://search.proquest.com/docview/1958507024 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 14 4757-4767 |
language |
English |
source |
Enthalten in International journal of climatology 37(2017), 14, Seite 4757-4767 volume:37 year:2017 number:14 pages:4757-4767 |
sourceStr |
Enthalten in International journal of climatology 37(2017), 14, Seite 4757-4767 volume:37 year:2017 number:14 pages:4757-4767 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
effective roughness length SEBS land surface heat flux trend Tibetan Plateau Net radiation Roughness Sensible heat transfer Glaciers Remote sensing Parameterization Latent heat Air temperature Greening Surface properties Radiation Plateaux Sensible heat flux Sensible heat Rivers Heat flux Enthalpy Temperature (air-sea) Roughness length Radiation balance Temperature Precipitation Temperature differences Radiation flux Heat transfer Surface energy Energy balance Heat Latent heat flux Trends Fluctuations Topsoil Fluxes Parametrization |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
International journal of climatology |
authorswithroles_txt_mv |
Han, Cunbo @@aut@@ Ma, Yaoming @@oth@@ Chen, Xuelong @@oth@@ Su, Zhongbo @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130763128 |
dewey-sort |
3550 |
id |
OLC1997651777 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997651777</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715074720.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/joc.5119</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997651777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997651777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1319-8dbd6fc647143b381ede679f3900461be98b714fb753eed562f6c8e8a2b658413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0104704320170000037001404757trendsoflandsurfaceheatfluxesonthetibetanplateaufr</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Cunbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Royal Meteorological Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective roughness length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SEBS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">land surface heat flux trend</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tibetan Plateau</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Net radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensible heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glaciers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Latent heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Greening</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plateaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensible heat flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensible heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enthalpy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature (air-sea)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roughness length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature differences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Latent heat flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trends</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluctuations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topsoil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluxes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametrization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Yaoming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xuelong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Zhongbo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of climatology</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1989</subfield><subfield code="g">37(2017), 14, Seite 4757-4767</subfield><subfield code="w">(DE-627)130763128</subfield><subfield code="w">(DE-600)1000947-4</subfield><subfield code="w">(DE-576)023035773</subfield><subfield code="x">0899-8418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:14</subfield><subfield code="g">pages:4757-4767</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/joc.5119</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/joc.5119/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1958507024</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2017</subfield><subfield code="e">14</subfield><subfield code="h">4757-4767</subfield></datafield></record></collection>
|
author |
Han, Cunbo |
spellingShingle |
Han, Cunbo ddc 550 rvk RA 1000 misc effective roughness length misc SEBS misc land surface heat flux trend misc Tibetan Plateau misc Net radiation misc Roughness misc Sensible heat transfer misc Glaciers misc Remote sensing misc Parameterization misc Latent heat misc Air temperature misc Greening misc Surface properties misc Radiation misc Plateaux misc Sensible heat flux misc Sensible heat misc Rivers misc Heat flux misc Enthalpy misc Temperature (air-sea) misc Roughness length misc Radiation balance misc Temperature misc Precipitation misc Temperature differences misc Radiation flux misc Heat transfer misc Surface energy misc Energy balance misc Heat misc Latent heat flux misc Trends misc Fluctuations misc Topsoil misc Fluxes misc Parametrization Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 |
authorStr |
Han, Cunbo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130763128 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0899-8418 |
topic_title |
550 DE-600 RA 1000 AVZ rvk Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 effective roughness length SEBS land surface heat flux trend Tibetan Plateau Net radiation Roughness Sensible heat transfer Glaciers Remote sensing Parameterization Latent heat Air temperature Greening Surface properties Radiation Plateaux Sensible heat flux Sensible heat Rivers Heat flux Enthalpy Temperature (air-sea) Roughness length Radiation balance Temperature Precipitation Temperature differences Radiation flux Heat transfer Surface energy Energy balance Heat Latent heat flux Trends Fluctuations Topsoil Fluxes Parametrization |
topic |
ddc 550 rvk RA 1000 misc effective roughness length misc SEBS misc land surface heat flux trend misc Tibetan Plateau misc Net radiation misc Roughness misc Sensible heat transfer misc Glaciers misc Remote sensing misc Parameterization misc Latent heat misc Air temperature misc Greening misc Surface properties misc Radiation misc Plateaux misc Sensible heat flux misc Sensible heat misc Rivers misc Heat flux misc Enthalpy misc Temperature (air-sea) misc Roughness length misc Radiation balance misc Temperature misc Precipitation misc Temperature differences misc Radiation flux misc Heat transfer misc Surface energy misc Energy balance misc Heat misc Latent heat flux misc Trends misc Fluctuations misc Topsoil misc Fluxes misc Parametrization |
topic_unstemmed |
ddc 550 rvk RA 1000 misc effective roughness length misc SEBS misc land surface heat flux trend misc Tibetan Plateau misc Net radiation misc Roughness misc Sensible heat transfer misc Glaciers misc Remote sensing misc Parameterization misc Latent heat misc Air temperature misc Greening misc Surface properties misc Radiation misc Plateaux misc Sensible heat flux misc Sensible heat misc Rivers misc Heat flux misc Enthalpy misc Temperature (air-sea) misc Roughness length misc Radiation balance misc Temperature misc Precipitation misc Temperature differences misc Radiation flux misc Heat transfer misc Surface energy misc Energy balance misc Heat misc Latent heat flux misc Trends misc Fluctuations misc Topsoil misc Fluxes misc Parametrization |
topic_browse |
ddc 550 rvk RA 1000 misc effective roughness length misc SEBS misc land surface heat flux trend misc Tibetan Plateau misc Net radiation misc Roughness misc Sensible heat transfer misc Glaciers misc Remote sensing misc Parameterization misc Latent heat misc Air temperature misc Greening misc Surface properties misc Radiation misc Plateaux misc Sensible heat flux misc Sensible heat misc Rivers misc Heat flux misc Enthalpy misc Temperature (air-sea) misc Roughness length misc Radiation balance misc Temperature misc Precipitation misc Temperature differences misc Radiation flux misc Heat transfer misc Surface energy misc Energy balance misc Heat misc Latent heat flux misc Trends misc Fluctuations misc Topsoil misc Fluxes misc Parametrization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y m ym x c xc z s zs |
hierarchy_parent_title |
International journal of climatology |
hierarchy_parent_id |
130763128 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
International journal of climatology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 |
title |
Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 |
ctrlnum |
(DE-627)OLC1997651777 (DE-599)GBVOLC1997651777 (PRQ)p1319-8dbd6fc647143b381ede679f3900461be98b714fb753eed562f6c8e8a2b658413 (KEY)0104704320170000037001404757trendsoflandsurfaceheatfluxesonthetibetanplateaufr |
title_full |
Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 |
author_sort |
Han, Cunbo |
journal |
International journal of climatology |
journalStr |
International journal of climatology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
4757 |
author_browse |
Han, Cunbo |
container_volume |
37 |
class |
550 DE-600 RA 1000 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Han, Cunbo |
doi_str_mv |
10.1002/joc.5119 |
dewey-full |
550 |
title_sort |
trends of land surface heat fluxes on the tibetan plateau from 2001 to 2012 |
title_auth |
Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 |
abstract |
A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient. |
abstractGer |
A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient. |
abstract_unstemmed |
A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 |
container_issue |
14 |
title_short |
Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 |
url |
http://dx.doi.org/10.1002/joc.5119 http://onlinelibrary.wiley.com/doi/10.1002/joc.5119/abstract https://search.proquest.com/docview/1958507024 |
remote_bool |
false |
author2 |
Ma, Yaoming Chen, Xuelong Su, Zhongbo |
author2Str |
Ma, Yaoming Chen, Xuelong Su, Zhongbo |
ppnlink |
130763128 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1002/joc.5119 |
up_date |
2024-07-04T03:22:52.697Z |
_version_ |
1803617171097518080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997651777</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715074720.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/joc.5119</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997651777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997651777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1319-8dbd6fc647143b381ede679f3900461be98b714fb753eed562f6c8e8a2b658413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0104704320170000037001404757trendsoflandsurfaceheatfluxesonthetibetanplateaufr</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Cunbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System ( SEBS ) model to account for subgrid‐scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau ( TP ) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP , and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP . In the Yarlung Zangbo River ( YZR ) Basin, the sensible heat flux increased because of a rise in the ground‐air temperature difference. The latent heat flux increased over the majority TP , except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening. Comparison between observed and remote sensing‐based land surface albedo and land surface temperature ( LST ) at the QOMS and Namco stations. RMSE is the root‐mean‐square error, MB is mean bias, and R is the correlation coefficient.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Royal Meteorological Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective roughness length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SEBS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">land surface heat flux trend</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tibetan Plateau</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Net radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roughness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensible heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glaciers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Latent heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Greening</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plateaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensible heat flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensible heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enthalpy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature (air-sea)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roughness length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature differences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Latent heat flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trends</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluctuations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topsoil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluxes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametrization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Yaoming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xuelong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Zhongbo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of climatology</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1989</subfield><subfield code="g">37(2017), 14, Seite 4757-4767</subfield><subfield code="w">(DE-627)130763128</subfield><subfield code="w">(DE-600)1000947-4</subfield><subfield code="w">(DE-576)023035773</subfield><subfield code="x">0899-8418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:14</subfield><subfield code="g">pages:4757-4767</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/joc.5119</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/joc.5119/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1958507024</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2017</subfield><subfield code="e">14</subfield><subfield code="h">4757-4767</subfield></datafield></record></collection>
|
score |
7.4020357 |