Complete convergence for weighted sums of mixingale sequences and statistical applications
In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors ar...
Ausführliche Beschreibung
Autor*in: |
Zhang, Lin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in statistics / Theory and methods - London : Taylor and Francis, 1982, 46(2017), 21, Seite 10692 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2017 ; number:21 ; pages:10692 |
Links: |
---|
DOI / URN: |
10.1080/03610926.2016.1242738 |
---|
Katalog-ID: |
OLC1997689464 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997689464 | ||
003 | DE-627 | ||
005 | 20220221022830.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/03610926.2016.1242738 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC1997689464 | ||
035 | |a (DE-599)GBVOLC1997689464 | ||
035 | |a (PRQ)c1591-8aeee367d790d47cb05b9c128b7b203d0968af58ce3f4bce8c1a9dd9d42705f60 | ||
035 | |a (KEY)0108848320170000046002110692completeconvergenceforweightedsumsofmixingaleseque | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.73 |2 bkl | ||
100 | 1 | |a Zhang, Lin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complete convergence for weighted sums of mixingale sequences and statistical applications |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed. | ||
540 | |a Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 | ||
650 | 4 | |a 60F15 | |
650 | 4 | |a Complete convergence | |
650 | 4 | |a simpler linear EV model | |
650 | 4 | |a martingale difference | |
650 | 4 | |a non parametric regression model | |
650 | 4 | |a mixingale | |
650 | 4 | |a Statistical analysis | |
650 | 4 | |a Sums | |
650 | 4 | |a Convergence | |
650 | 4 | |a Regression models | |
700 | 1 | |a Miao, Yu |4 oth | |
700 | 1 | |a Mu, Jianyong |4 oth | |
700 | 1 | |a Xu, Jie |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Communications in statistics / Theory and methods |d London : Taylor and Francis, 1982 |g 46(2017), 21, Seite 10692 |w (DE-627)129862290 |w (DE-600)283673-7 |w (DE-576)015173747 |x 0361-0926 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2017 |g number:21 |g pages:10692 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/03610926.2016.1242738 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1242738 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1964122341 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 31.73 |q AVZ |
951 | |a AR | ||
952 | |d 46 |j 2017 |e 21 |h 10692 |
author_variant |
l z lz |
---|---|
matchkey_str |
article:03610926:2017----::opeeovrecfregtdusfiiglsqecsnsa |
hierarchy_sort_str |
2017 |
bklnumber |
31.73 |
publishDate |
2017 |
allfields |
10.1080/03610926.2016.1242738 doi PQ20171125 (DE-627)OLC1997689464 (DE-599)GBVOLC1997689464 (PRQ)c1591-8aeee367d790d47cb05b9c128b7b203d0968af58ce3f4bce8c1a9dd9d42705f60 (KEY)0108848320170000046002110692completeconvergenceforweightedsumsofmixingaleseque DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Zhang, Lin verfasserin aut Complete convergence for weighted sums of mixingale sequences and statistical applications 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 60F15 Complete convergence simpler linear EV model martingale difference non parametric regression model mixingale Statistical analysis Sums Convergence Regression models Miao, Yu oth Mu, Jianyong oth Xu, Jie oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 21, Seite 10692 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:21 pages:10692 http://dx.doi.org/10.1080/03610926.2016.1242738 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1242738 https://search.proquest.com/docview/1964122341 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 21 10692 |
spelling |
10.1080/03610926.2016.1242738 doi PQ20171125 (DE-627)OLC1997689464 (DE-599)GBVOLC1997689464 (PRQ)c1591-8aeee367d790d47cb05b9c128b7b203d0968af58ce3f4bce8c1a9dd9d42705f60 (KEY)0108848320170000046002110692completeconvergenceforweightedsumsofmixingaleseque DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Zhang, Lin verfasserin aut Complete convergence for weighted sums of mixingale sequences and statistical applications 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 60F15 Complete convergence simpler linear EV model martingale difference non parametric regression model mixingale Statistical analysis Sums Convergence Regression models Miao, Yu oth Mu, Jianyong oth Xu, Jie oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 21, Seite 10692 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:21 pages:10692 http://dx.doi.org/10.1080/03610926.2016.1242738 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1242738 https://search.proquest.com/docview/1964122341 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 21 10692 |
allfields_unstemmed |
10.1080/03610926.2016.1242738 doi PQ20171125 (DE-627)OLC1997689464 (DE-599)GBVOLC1997689464 (PRQ)c1591-8aeee367d790d47cb05b9c128b7b203d0968af58ce3f4bce8c1a9dd9d42705f60 (KEY)0108848320170000046002110692completeconvergenceforweightedsumsofmixingaleseque DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Zhang, Lin verfasserin aut Complete convergence for weighted sums of mixingale sequences and statistical applications 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 60F15 Complete convergence simpler linear EV model martingale difference non parametric regression model mixingale Statistical analysis Sums Convergence Regression models Miao, Yu oth Mu, Jianyong oth Xu, Jie oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 21, Seite 10692 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:21 pages:10692 http://dx.doi.org/10.1080/03610926.2016.1242738 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1242738 https://search.proquest.com/docview/1964122341 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 21 10692 |
allfieldsGer |
10.1080/03610926.2016.1242738 doi PQ20171125 (DE-627)OLC1997689464 (DE-599)GBVOLC1997689464 (PRQ)c1591-8aeee367d790d47cb05b9c128b7b203d0968af58ce3f4bce8c1a9dd9d42705f60 (KEY)0108848320170000046002110692completeconvergenceforweightedsumsofmixingaleseque DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Zhang, Lin verfasserin aut Complete convergence for weighted sums of mixingale sequences and statistical applications 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 60F15 Complete convergence simpler linear EV model martingale difference non parametric regression model mixingale Statistical analysis Sums Convergence Regression models Miao, Yu oth Mu, Jianyong oth Xu, Jie oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 21, Seite 10692 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:21 pages:10692 http://dx.doi.org/10.1080/03610926.2016.1242738 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1242738 https://search.proquest.com/docview/1964122341 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 21 10692 |
allfieldsSound |
10.1080/03610926.2016.1242738 doi PQ20171125 (DE-627)OLC1997689464 (DE-599)GBVOLC1997689464 (PRQ)c1591-8aeee367d790d47cb05b9c128b7b203d0968af58ce3f4bce8c1a9dd9d42705f60 (KEY)0108848320170000046002110692completeconvergenceforweightedsumsofmixingaleseque DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Zhang, Lin verfasserin aut Complete convergence for weighted sums of mixingale sequences and statistical applications 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 60F15 Complete convergence simpler linear EV model martingale difference non parametric regression model mixingale Statistical analysis Sums Convergence Regression models Miao, Yu oth Mu, Jianyong oth Xu, Jie oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 21, Seite 10692 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:21 pages:10692 http://dx.doi.org/10.1080/03610926.2016.1242738 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1242738 https://search.proquest.com/docview/1964122341 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 21 10692 |
language |
English |
source |
Enthalten in Communications in statistics / Theory and methods 46(2017), 21, Seite 10692 volume:46 year:2017 number:21 pages:10692 |
sourceStr |
Enthalten in Communications in statistics / Theory and methods 46(2017), 21, Seite 10692 volume:46 year:2017 number:21 pages:10692 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
60F15 Complete convergence simpler linear EV model martingale difference non parametric regression model mixingale Statistical analysis Sums Convergence Regression models |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Communications in statistics / Theory and methods |
authorswithroles_txt_mv |
Zhang, Lin @@aut@@ Miao, Yu @@oth@@ Mu, Jianyong @@oth@@ Xu, Jie @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129862290 |
dewey-sort |
3510 |
id |
OLC1997689464 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997689464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221022830.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03610926.2016.1242738</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997689464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997689464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1591-8aeee367d790d47cb05b9c128b7b203d0968af58ce3f4bce8c1a9dd9d42705f60</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108848320170000046002110692completeconvergenceforweightedsumsofmixingaleseque</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complete convergence for weighted sums of mixingale sequences and statistical applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">60F15</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complete convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simpler linear EV model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">martingale difference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non parametric regression model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixingale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sums</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miao, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mu, Jianyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Jie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in statistics / Theory and methods</subfield><subfield code="d">London : Taylor and Francis, 1982</subfield><subfield code="g">46(2017), 21, Seite 10692</subfield><subfield code="w">(DE-627)129862290</subfield><subfield code="w">(DE-600)283673-7</subfield><subfield code="w">(DE-576)015173747</subfield><subfield code="x">0361-0926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:21</subfield><subfield code="g">pages:10692</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03610926.2016.1242738</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1242738</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1964122341</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2017</subfield><subfield code="e">21</subfield><subfield code="h">10692</subfield></datafield></record></collection>
|
author |
Zhang, Lin |
spellingShingle |
Zhang, Lin ddc 510 bkl 31.73 misc 60F15 misc Complete convergence misc simpler linear EV model misc martingale difference misc non parametric regression model misc mixingale misc Statistical analysis misc Sums misc Convergence misc Regression models Complete convergence for weighted sums of mixingale sequences and statistical applications |
authorStr |
Zhang, Lin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129862290 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-0926 |
topic_title |
510 DE-600 31.73 bkl Complete convergence for weighted sums of mixingale sequences and statistical applications 60F15 Complete convergence simpler linear EV model martingale difference non parametric regression model mixingale Statistical analysis Sums Convergence Regression models |
topic |
ddc 510 bkl 31.73 misc 60F15 misc Complete convergence misc simpler linear EV model misc martingale difference misc non parametric regression model misc mixingale misc Statistical analysis misc Sums misc Convergence misc Regression models |
topic_unstemmed |
ddc 510 bkl 31.73 misc 60F15 misc Complete convergence misc simpler linear EV model misc martingale difference misc non parametric regression model misc mixingale misc Statistical analysis misc Sums misc Convergence misc Regression models |
topic_browse |
ddc 510 bkl 31.73 misc 60F15 misc Complete convergence misc simpler linear EV model misc martingale difference misc non parametric regression model misc mixingale misc Statistical analysis misc Sums misc Convergence misc Regression models |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y m ym j m jm j x jx |
hierarchy_parent_title |
Communications in statistics / Theory and methods |
hierarchy_parent_id |
129862290 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Communications in statistics / Theory and methods |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 |
title |
Complete convergence for weighted sums of mixingale sequences and statistical applications |
ctrlnum |
(DE-627)OLC1997689464 (DE-599)GBVOLC1997689464 (PRQ)c1591-8aeee367d790d47cb05b9c128b7b203d0968af58ce3f4bce8c1a9dd9d42705f60 (KEY)0108848320170000046002110692completeconvergenceforweightedsumsofmixingaleseque |
title_full |
Complete convergence for weighted sums of mixingale sequences and statistical applications |
author_sort |
Zhang, Lin |
journal |
Communications in statistics / Theory and methods |
journalStr |
Communications in statistics / Theory and methods |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
10692 |
author_browse |
Zhang, Lin |
container_volume |
46 |
class |
510 DE-600 31.73 bkl |
format_se |
Aufsätze |
author-letter |
Zhang, Lin |
doi_str_mv |
10.1080/03610926.2016.1242738 |
dewey-full |
510 |
title_sort |
complete convergence for weighted sums of mixingale sequences and statistical applications |
title_auth |
Complete convergence for weighted sums of mixingale sequences and statistical applications |
abstract |
In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed. |
abstractGer |
In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed. |
abstract_unstemmed |
In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
21 |
title_short |
Complete convergence for weighted sums of mixingale sequences and statistical applications |
url |
http://dx.doi.org/10.1080/03610926.2016.1242738 http://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1242738 https://search.proquest.com/docview/1964122341 |
remote_bool |
false |
author2 |
Miao, Yu Mu, Jianyong Xu, Jie |
author2Str |
Miao, Yu Mu, Jianyong Xu, Jie |
ppnlink |
129862290 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1080/03610926.2016.1242738 |
up_date |
2024-07-04T03:27:27.838Z |
_version_ |
1803617459597475840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997689464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221022830.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03610926.2016.1242738</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997689464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997689464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1591-8aeee367d790d47cb05b9c128b7b203d0968af58ce3f4bce8c1a9dd9d42705f60</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108848320170000046002110692completeconvergenceforweightedsumsofmixingaleseque</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complete convergence for weighted sums of mixingale sequences and statistical applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the complete convergence of weighted sums of L r -mixingale is established, from which the complete convergence of martingale differences is also derived. As statistical applications, non parametric regression model and simpler linear errors-in-variables model with mixingale errors are discussed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">60F15</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complete convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simpler linear EV model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">martingale difference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non parametric regression model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixingale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sums</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miao, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mu, Jianyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Jie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in statistics / Theory and methods</subfield><subfield code="d">London : Taylor and Francis, 1982</subfield><subfield code="g">46(2017), 21, Seite 10692</subfield><subfield code="w">(DE-627)129862290</subfield><subfield code="w">(DE-600)283673-7</subfield><subfield code="w">(DE-576)015173747</subfield><subfield code="x">0361-0926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:21</subfield><subfield code="g">pages:10692</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03610926.2016.1242738</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1242738</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1964122341</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2017</subfield><subfield code="e">21</subfield><subfield code="h">10692</subfield></datafield></record></collection>
|
score |
7.402647 |