Color contoning for 3D printing
Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from...
Ausführliche Beschreibung
Autor*in: |
Babaei, Vahid [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: ACM transactions on graphics - New York, NY [u.a.] : ACM, 1982, 36(2017), 4, Seite 1-15 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2017 ; number:4 ; pages:1-15 |
Links: |
---|
DOI / URN: |
10.1145/3072959.3073605 |
---|
Katalog-ID: |
OLC1997739275 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997739275 | ||
003 | DE-627 | ||
005 | 20210716221553.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1145/3072959.3073605 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1997739275 | ||
035 | |a (DE-599)GBVOLC1997739275 | ||
035 | |a (PRQ)a913-2c876195baf286f44d9b0d8379ffb4035dd54c5e8f4b4a8460e51d10d7e981460 | ||
035 | |a (KEY)0113852920170000036000400001colorcontoningfor3dprinting | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
100 | 1 | |a Babaei, Vahid |e verfasserin |4 aut | |
245 | 1 | 0 | |a Color contoning for 3D printing |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results. | ||
650 | 4 | |a fabrication | |
650 | 4 | |a 3D printing | |
650 | 4 | |a halftoning | |
650 | 4 | |a color reproduction | |
650 | 4 | |a color | |
700 | 1 | |a Vidimče, Kiril |4 oth | |
700 | 1 | |a Foshey, Michael |4 oth | |
700 | 1 | |a Kaspar, Alexandre |4 oth | |
700 | 1 | |a Didyk, Piotr |4 oth | |
700 | 1 | |a Matusik, Wojciech |4 oth | |
773 | 0 | 8 | |i Enthalten in |t ACM transactions on graphics |d New York, NY [u.a.] : ACM, 1982 |g 36(2017), 4, Seite 1-15 |w (DE-627)13041509X |w (DE-600)625686-7 |w (DE-576)015917770 |x 0730-0301 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2017 |g number:4 |g pages:1-15 |
856 | 4 | 1 | |u http://dx.doi.org/10.1145/3072959.3073605 |3 Volltext |
856 | 4 | 2 | |u http://dl.acm.org/citation.cfm?id=3073605 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4317 | ||
951 | |a AR | ||
952 | |d 36 |j 2017 |e 4 |h 1-15 |
author_variant |
v b vb |
---|---|
matchkey_str |
article:07300301:2017----::oocnoigo3 |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1145/3072959.3073605 doi PQ20171228 (DE-627)OLC1997739275 (DE-599)GBVOLC1997739275 (PRQ)a913-2c876195baf286f44d9b0d8379ffb4035dd54c5e8f4b4a8460e51d10d7e981460 (KEY)0113852920170000036000400001colorcontoningfor3dprinting DE-627 ger DE-627 rakwb eng 004 DE-600 Babaei, Vahid verfasserin aut Color contoning for 3D printing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results. fabrication 3D printing halftoning color reproduction color Vidimče, Kiril oth Foshey, Michael oth Kaspar, Alexandre oth Didyk, Piotr oth Matusik, Wojciech oth Enthalten in ACM transactions on graphics New York, NY [u.a.] : ACM, 1982 36(2017), 4, Seite 1-15 (DE-627)13041509X (DE-600)625686-7 (DE-576)015917770 0730-0301 nnns volume:36 year:2017 number:4 pages:1-15 http://dx.doi.org/10.1145/3072959.3073605 Volltext http://dl.acm.org/citation.cfm?id=3073605 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2190 GBV_ILN_4317 AR 36 2017 4 1-15 |
spelling |
10.1145/3072959.3073605 doi PQ20171228 (DE-627)OLC1997739275 (DE-599)GBVOLC1997739275 (PRQ)a913-2c876195baf286f44d9b0d8379ffb4035dd54c5e8f4b4a8460e51d10d7e981460 (KEY)0113852920170000036000400001colorcontoningfor3dprinting DE-627 ger DE-627 rakwb eng 004 DE-600 Babaei, Vahid verfasserin aut Color contoning for 3D printing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results. fabrication 3D printing halftoning color reproduction color Vidimče, Kiril oth Foshey, Michael oth Kaspar, Alexandre oth Didyk, Piotr oth Matusik, Wojciech oth Enthalten in ACM transactions on graphics New York, NY [u.a.] : ACM, 1982 36(2017), 4, Seite 1-15 (DE-627)13041509X (DE-600)625686-7 (DE-576)015917770 0730-0301 nnns volume:36 year:2017 number:4 pages:1-15 http://dx.doi.org/10.1145/3072959.3073605 Volltext http://dl.acm.org/citation.cfm?id=3073605 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2190 GBV_ILN_4317 AR 36 2017 4 1-15 |
allfields_unstemmed |
10.1145/3072959.3073605 doi PQ20171228 (DE-627)OLC1997739275 (DE-599)GBVOLC1997739275 (PRQ)a913-2c876195baf286f44d9b0d8379ffb4035dd54c5e8f4b4a8460e51d10d7e981460 (KEY)0113852920170000036000400001colorcontoningfor3dprinting DE-627 ger DE-627 rakwb eng 004 DE-600 Babaei, Vahid verfasserin aut Color contoning for 3D printing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results. fabrication 3D printing halftoning color reproduction color Vidimče, Kiril oth Foshey, Michael oth Kaspar, Alexandre oth Didyk, Piotr oth Matusik, Wojciech oth Enthalten in ACM transactions on graphics New York, NY [u.a.] : ACM, 1982 36(2017), 4, Seite 1-15 (DE-627)13041509X (DE-600)625686-7 (DE-576)015917770 0730-0301 nnns volume:36 year:2017 number:4 pages:1-15 http://dx.doi.org/10.1145/3072959.3073605 Volltext http://dl.acm.org/citation.cfm?id=3073605 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2190 GBV_ILN_4317 AR 36 2017 4 1-15 |
allfieldsGer |
10.1145/3072959.3073605 doi PQ20171228 (DE-627)OLC1997739275 (DE-599)GBVOLC1997739275 (PRQ)a913-2c876195baf286f44d9b0d8379ffb4035dd54c5e8f4b4a8460e51d10d7e981460 (KEY)0113852920170000036000400001colorcontoningfor3dprinting DE-627 ger DE-627 rakwb eng 004 DE-600 Babaei, Vahid verfasserin aut Color contoning for 3D printing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results. fabrication 3D printing halftoning color reproduction color Vidimče, Kiril oth Foshey, Michael oth Kaspar, Alexandre oth Didyk, Piotr oth Matusik, Wojciech oth Enthalten in ACM transactions on graphics New York, NY [u.a.] : ACM, 1982 36(2017), 4, Seite 1-15 (DE-627)13041509X (DE-600)625686-7 (DE-576)015917770 0730-0301 nnns volume:36 year:2017 number:4 pages:1-15 http://dx.doi.org/10.1145/3072959.3073605 Volltext http://dl.acm.org/citation.cfm?id=3073605 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2190 GBV_ILN_4317 AR 36 2017 4 1-15 |
allfieldsSound |
10.1145/3072959.3073605 doi PQ20171228 (DE-627)OLC1997739275 (DE-599)GBVOLC1997739275 (PRQ)a913-2c876195baf286f44d9b0d8379ffb4035dd54c5e8f4b4a8460e51d10d7e981460 (KEY)0113852920170000036000400001colorcontoningfor3dprinting DE-627 ger DE-627 rakwb eng 004 DE-600 Babaei, Vahid verfasserin aut Color contoning for 3D printing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results. fabrication 3D printing halftoning color reproduction color Vidimče, Kiril oth Foshey, Michael oth Kaspar, Alexandre oth Didyk, Piotr oth Matusik, Wojciech oth Enthalten in ACM transactions on graphics New York, NY [u.a.] : ACM, 1982 36(2017), 4, Seite 1-15 (DE-627)13041509X (DE-600)625686-7 (DE-576)015917770 0730-0301 nnns volume:36 year:2017 number:4 pages:1-15 http://dx.doi.org/10.1145/3072959.3073605 Volltext http://dl.acm.org/citation.cfm?id=3073605 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2190 GBV_ILN_4317 AR 36 2017 4 1-15 |
language |
English |
source |
Enthalten in ACM transactions on graphics 36(2017), 4, Seite 1-15 volume:36 year:2017 number:4 pages:1-15 |
sourceStr |
Enthalten in ACM transactions on graphics 36(2017), 4, Seite 1-15 volume:36 year:2017 number:4 pages:1-15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fabrication 3D printing halftoning color reproduction color |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
ACM transactions on graphics |
authorswithroles_txt_mv |
Babaei, Vahid @@aut@@ Vidimče, Kiril @@oth@@ Foshey, Michael @@oth@@ Kaspar, Alexandre @@oth@@ Didyk, Piotr @@oth@@ Matusik, Wojciech @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
13041509X |
dewey-sort |
14 |
id |
OLC1997739275 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997739275</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716221553.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1145/3072959.3073605</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997739275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997739275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a913-2c876195baf286f44d9b0d8379ffb4035dd54c5e8f4b4a8460e51d10d7e981460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0113852920170000036000400001colorcontoningfor3dprinting</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Babaei, Vahid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Color contoning for 3D printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fabrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D printing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">halftoning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">color reproduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">color</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vidimče, Kiril</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Foshey, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaspar, Alexandre</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Didyk, Piotr</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matusik, Wojciech</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">ACM transactions on graphics</subfield><subfield code="d">New York, NY [u.a.] : ACM, 1982</subfield><subfield code="g">36(2017), 4, Seite 1-15</subfield><subfield code="w">(DE-627)13041509X</subfield><subfield code="w">(DE-600)625686-7</subfield><subfield code="w">(DE-576)015917770</subfield><subfield code="x">0730-0301</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1-15</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1145/3072959.3073605</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dl.acm.org/citation.cfm?id=3073605</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="h">1-15</subfield></datafield></record></collection>
|
author |
Babaei, Vahid |
spellingShingle |
Babaei, Vahid ddc 004 misc fabrication misc 3D printing misc halftoning misc color reproduction misc color Color contoning for 3D printing |
authorStr |
Babaei, Vahid |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13041509X |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0730-0301 |
topic_title |
004 DE-600 Color contoning for 3D printing fabrication 3D printing halftoning color reproduction color |
topic |
ddc 004 misc fabrication misc 3D printing misc halftoning misc color reproduction misc color |
topic_unstemmed |
ddc 004 misc fabrication misc 3D printing misc halftoning misc color reproduction misc color |
topic_browse |
ddc 004 misc fabrication misc 3D printing misc halftoning misc color reproduction misc color |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
k v kv m f mf a k ak p d pd w m wm |
hierarchy_parent_title |
ACM transactions on graphics |
hierarchy_parent_id |
13041509X |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
ACM transactions on graphics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13041509X (DE-600)625686-7 (DE-576)015917770 |
title |
Color contoning for 3D printing |
ctrlnum |
(DE-627)OLC1997739275 (DE-599)GBVOLC1997739275 (PRQ)a913-2c876195baf286f44d9b0d8379ffb4035dd54c5e8f4b4a8460e51d10d7e981460 (KEY)0113852920170000036000400001colorcontoningfor3dprinting |
title_full |
Color contoning for 3D printing |
author_sort |
Babaei, Vahid |
journal |
ACM transactions on graphics |
journalStr |
ACM transactions on graphics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Babaei, Vahid |
container_volume |
36 |
class |
004 DE-600 |
format_se |
Aufsätze |
author-letter |
Babaei, Vahid |
doi_str_mv |
10.1145/3072959.3073605 |
dewey-full |
004 |
title_sort |
color contoning for 3d printing |
title_auth |
Color contoning for 3D printing |
abstract |
Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results. |
abstractGer |
Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results. |
abstract_unstemmed |
Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2190 GBV_ILN_4317 |
container_issue |
4 |
title_short |
Color contoning for 3D printing |
url |
http://dx.doi.org/10.1145/3072959.3073605 http://dl.acm.org/citation.cfm?id=3073605 |
remote_bool |
false |
author2 |
Vidimče, Kiril Foshey, Michael Kaspar, Alexandre Didyk, Piotr Matusik, Wojciech |
author2Str |
Vidimče, Kiril Foshey, Michael Kaspar, Alexandre Didyk, Piotr Matusik, Wojciech |
ppnlink |
13041509X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1145/3072959.3073605 |
up_date |
2024-07-04T03:34:04.220Z |
_version_ |
1803617875248807936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997739275</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716221553.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1145/3072959.3073605</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997739275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997739275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a913-2c876195baf286f44d9b0d8379ffb4035dd54c5e8f4b4a8460e51d10d7e981460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0113852920170000036000400001colorcontoningfor3dprinting</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Babaei, Vahid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Color contoning for 3D printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fabrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D printing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">halftoning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">color reproduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">color</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vidimče, Kiril</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Foshey, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaspar, Alexandre</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Didyk, Piotr</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matusik, Wojciech</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">ACM transactions on graphics</subfield><subfield code="d">New York, NY [u.a.] : ACM, 1982</subfield><subfield code="g">36(2017), 4, Seite 1-15</subfield><subfield code="w">(DE-627)13041509X</subfield><subfield code="w">(DE-600)625686-7</subfield><subfield code="w">(DE-576)015917770</subfield><subfield code="x">0730-0301</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1-15</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1145/3072959.3073605</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dl.acm.org/citation.cfm?id=3073605</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="h">1-15</subfield></datafield></record></collection>
|
score |
7.4030848 |