Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model
Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimiz...
Ausführliche Beschreibung
Autor*in: |
Roberts, Ian [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of lightwave technology - New York, NY : IEEE, 1983, 35(2017), 20, Seite 4425-4437 |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2017 ; number:20 ; pages:4425-4437 |
Links: |
---|
DOI / URN: |
10.1109/JLT.2017.2744624 |
---|
Katalog-ID: |
OLC1997802392 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997802392 | ||
003 | DE-627 | ||
005 | 20230715075401.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JLT.2017.2744624 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1997802392 | ||
035 | |a (DE-599)GBVOLC1997802392 | ||
035 | |a (PRQ)i650-e7269543cf3aea3dd5f706c7d452f8ff746ccdaada775d34d900cd6e6ae9195e0 | ||
035 | |a (KEY)0124889820170000035002004425efficientdiscreterateassignmentandpoweroptimizatio | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 600 |a 620 |q DE-600 |
100 | 1 | |a Roberts, Ian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps. | ||
650 | 4 | |a Measurement | |
650 | 4 | |a Resource management | |
650 | 4 | |a gaussian noise model | |
650 | 4 | |a Encoding | |
650 | 4 | |a Signal to noise ratio | |
650 | 4 | |a Discrete capacity optimization | |
650 | 4 | |a optical communications | |
650 | 4 | |a network optimization | |
650 | 4 | |a Gaussian noise | |
650 | 4 | |a Optimization | |
650 | 4 | |a Optical noise | |
700 | 1 | |a Kahn, Joseph M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of lightwave technology |d New York, NY : IEEE, 1983 |g 35(2017), 20, Seite 4425-4437 |w (DE-627)129620882 |w (DE-600)246121-3 |w (DE-576)015127214 |x 0733-8724 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2017 |g number:20 |g pages:4425-4437 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JLT.2017.2744624 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/8016579 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_185 | ||
951 | |a AR | ||
952 | |d 35 |j 2017 |e 20 |h 4425-4437 |
author_variant |
i r ir |
---|---|
matchkey_str |
article:07338724:2017----::fiindsrtrtasgmnadoeotmztoiotclomnctosses |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/JLT.2017.2744624 doi PQ20171228 (DE-627)OLC1997802392 (DE-599)GBVOLC1997802392 (PRQ)i650-e7269543cf3aea3dd5f706c7d452f8ff746ccdaada775d34d900cd6e6ae9195e0 (KEY)0124889820170000035002004425efficientdiscreterateassignmentandpoweroptimizatio DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Roberts, Ian verfasserin aut Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps. Measurement Resource management gaussian noise model Encoding Signal to noise ratio Discrete capacity optimization optical communications network optimization Gaussian noise Optimization Optical noise Kahn, Joseph M oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 20, Seite 4425-4437 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:20 pages:4425-4437 http://dx.doi.org/10.1109/JLT.2017.2744624 Volltext http://ieeexplore.ieee.org/document/8016579 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 20 4425-4437 |
spelling |
10.1109/JLT.2017.2744624 doi PQ20171228 (DE-627)OLC1997802392 (DE-599)GBVOLC1997802392 (PRQ)i650-e7269543cf3aea3dd5f706c7d452f8ff746ccdaada775d34d900cd6e6ae9195e0 (KEY)0124889820170000035002004425efficientdiscreterateassignmentandpoweroptimizatio DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Roberts, Ian verfasserin aut Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps. Measurement Resource management gaussian noise model Encoding Signal to noise ratio Discrete capacity optimization optical communications network optimization Gaussian noise Optimization Optical noise Kahn, Joseph M oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 20, Seite 4425-4437 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:20 pages:4425-4437 http://dx.doi.org/10.1109/JLT.2017.2744624 Volltext http://ieeexplore.ieee.org/document/8016579 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 20 4425-4437 |
allfields_unstemmed |
10.1109/JLT.2017.2744624 doi PQ20171228 (DE-627)OLC1997802392 (DE-599)GBVOLC1997802392 (PRQ)i650-e7269543cf3aea3dd5f706c7d452f8ff746ccdaada775d34d900cd6e6ae9195e0 (KEY)0124889820170000035002004425efficientdiscreterateassignmentandpoweroptimizatio DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Roberts, Ian verfasserin aut Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps. Measurement Resource management gaussian noise model Encoding Signal to noise ratio Discrete capacity optimization optical communications network optimization Gaussian noise Optimization Optical noise Kahn, Joseph M oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 20, Seite 4425-4437 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:20 pages:4425-4437 http://dx.doi.org/10.1109/JLT.2017.2744624 Volltext http://ieeexplore.ieee.org/document/8016579 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 20 4425-4437 |
allfieldsGer |
10.1109/JLT.2017.2744624 doi PQ20171228 (DE-627)OLC1997802392 (DE-599)GBVOLC1997802392 (PRQ)i650-e7269543cf3aea3dd5f706c7d452f8ff746ccdaada775d34d900cd6e6ae9195e0 (KEY)0124889820170000035002004425efficientdiscreterateassignmentandpoweroptimizatio DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Roberts, Ian verfasserin aut Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps. Measurement Resource management gaussian noise model Encoding Signal to noise ratio Discrete capacity optimization optical communications network optimization Gaussian noise Optimization Optical noise Kahn, Joseph M oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 20, Seite 4425-4437 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:20 pages:4425-4437 http://dx.doi.org/10.1109/JLT.2017.2744624 Volltext http://ieeexplore.ieee.org/document/8016579 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 20 4425-4437 |
allfieldsSound |
10.1109/JLT.2017.2744624 doi PQ20171228 (DE-627)OLC1997802392 (DE-599)GBVOLC1997802392 (PRQ)i650-e7269543cf3aea3dd5f706c7d452f8ff746ccdaada775d34d900cd6e6ae9195e0 (KEY)0124889820170000035002004425efficientdiscreterateassignmentandpoweroptimizatio DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Roberts, Ian verfasserin aut Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps. Measurement Resource management gaussian noise model Encoding Signal to noise ratio Discrete capacity optimization optical communications network optimization Gaussian noise Optimization Optical noise Kahn, Joseph M oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 20, Seite 4425-4437 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:20 pages:4425-4437 http://dx.doi.org/10.1109/JLT.2017.2744624 Volltext http://ieeexplore.ieee.org/document/8016579 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 20 4425-4437 |
language |
English |
source |
Enthalten in Journal of lightwave technology 35(2017), 20, Seite 4425-4437 volume:35 year:2017 number:20 pages:4425-4437 |
sourceStr |
Enthalten in Journal of lightwave technology 35(2017), 20, Seite 4425-4437 volume:35 year:2017 number:20 pages:4425-4437 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Measurement Resource management gaussian noise model Encoding Signal to noise ratio Discrete capacity optimization optical communications network optimization Gaussian noise Optimization Optical noise |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of lightwave technology |
authorswithroles_txt_mv |
Roberts, Ian @@aut@@ Kahn, Joseph M @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129620882 |
dewey-sort |
3530 |
id |
OLC1997802392 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997802392</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715075401.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2017.2744624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997802392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997802392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i650-e7269543cf3aea3dd5f706c7d452f8ff746ccdaada775d34d900cd6e6ae9195e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820170000035002004425efficientdiscreterateassignmentandpoweroptimizatio</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roberts, Ian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resource management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gaussian noise model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal to noise ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete capacity optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical noise</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kahn, Joseph M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">35(2017), 20, Seite 4425-4437</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:20</subfield><subfield code="g">pages:4425-4437</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2017.2744624</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/8016579</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2017</subfield><subfield code="e">20</subfield><subfield code="h">4425-4437</subfield></datafield></record></collection>
|
author |
Roberts, Ian |
spellingShingle |
Roberts, Ian ddc 530 misc Measurement misc Resource management misc gaussian noise model misc Encoding misc Signal to noise ratio misc Discrete capacity optimization misc optical communications misc network optimization misc Gaussian noise misc Optimization misc Optical noise Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model |
authorStr |
Roberts, Ian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129620882 |
format |
Article |
dewey-ones |
530 - Physics 600 - Technology 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0733-8724 |
topic_title |
530 600 620 DE-600 Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model Measurement Resource management gaussian noise model Encoding Signal to noise ratio Discrete capacity optimization optical communications network optimization Gaussian noise Optimization Optical noise |
topic |
ddc 530 misc Measurement misc Resource management misc gaussian noise model misc Encoding misc Signal to noise ratio misc Discrete capacity optimization misc optical communications misc network optimization misc Gaussian noise misc Optimization misc Optical noise |
topic_unstemmed |
ddc 530 misc Measurement misc Resource management misc gaussian noise model misc Encoding misc Signal to noise ratio misc Discrete capacity optimization misc optical communications misc network optimization misc Gaussian noise misc Optimization misc Optical noise |
topic_browse |
ddc 530 misc Measurement misc Resource management misc gaussian noise model misc Encoding misc Signal to noise ratio misc Discrete capacity optimization misc optical communications misc network optimization misc Gaussian noise misc Optimization misc Optical noise |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j m k jm jmk |
hierarchy_parent_title |
Journal of lightwave technology |
hierarchy_parent_id |
129620882 |
dewey-tens |
530 - Physics 600 - Technology 620 - Engineering |
hierarchy_top_title |
Journal of lightwave technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 |
title |
Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model |
ctrlnum |
(DE-627)OLC1997802392 (DE-599)GBVOLC1997802392 (PRQ)i650-e7269543cf3aea3dd5f706c7d452f8ff746ccdaada775d34d900cd6e6ae9195e0 (KEY)0124889820170000035002004425efficientdiscreterateassignmentandpoweroptimizatio |
title_full |
Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model |
author_sort |
Roberts, Ian |
journal |
Journal of lightwave technology |
journalStr |
Journal of lightwave technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
4425 |
author_browse |
Roberts, Ian |
container_volume |
35 |
class |
530 600 620 DE-600 |
format_se |
Aufsätze |
author-letter |
Roberts, Ian |
doi_str_mv |
10.1109/JLT.2017.2744624 |
dewey-full |
530 600 620 |
title_sort |
efficient discrete rate assignment and power optimization in optical communication systems following the gaussian noise model |
title_auth |
Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model |
abstract |
Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps. |
abstractGer |
Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps. |
abstract_unstemmed |
Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 |
container_issue |
20 |
title_short |
Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model |
url |
http://dx.doi.org/10.1109/JLT.2017.2744624 http://ieeexplore.ieee.org/document/8016579 |
remote_bool |
false |
author2 |
Kahn, Joseph M |
author2Str |
Kahn, Joseph M |
ppnlink |
129620882 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/JLT.2017.2744624 |
up_date |
2024-07-04T03:43:30.707Z |
_version_ |
1803618469245091840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997802392</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715075401.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2017.2744624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997802392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997802392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i650-e7269543cf3aea3dd5f706c7d452f8ff746ccdaada775d34d900cd6e6ae9195e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820170000035002004425efficientdiscreterateassignmentandpoweroptimizatio</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roberts, Ian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient Discrete Rate Assignment and Power Optimization in Optical Communication Systems Following the Gaussian Noise Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computationally efficient heuristics for solving the discrete-rate capacity optimization problem for optical fiber communication systems are investigated. In the Gaussian noise nonlinearity model regime, this class of problem is an NP-hard mixed integer convex problem. The proposed heuristic minimizes the number of calls required to solve the computationally intensive problem of determining the feasibility of proposed discrete rate allocations. In a live system, optimization using this algorithm minimizes the number of potential discrete rate allocations tested for feasibility while additional discrete system capacity is extracted. In exemplary point-to-point links at 50 Gbaud with 50 Gb/s rate steps, the mean lost capacity per modem is reduced from 24.5 Gb/s with truncation to 7.95 Gb/s with discrete-rate optimization. With 25 Gb/s rate steps, the mean lost capacity is reduced from 12.3 Gb/s to 2.07 Gb/s. An unbiased metric is proposed to extend the capacity optimization objective from point-to-point links to mesh networks. A gain of 13% in distance-times-capacity metric is obtained from discrete-rate optimization with 50 Gb/s rate steps, and a 7.5% gain is obtained with 25 Gb/s rate steps.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resource management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gaussian noise model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal to noise ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete capacity optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical noise</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kahn, Joseph M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">35(2017), 20, Seite 4425-4437</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:20</subfield><subfield code="g">pages:4425-4437</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2017.2744624</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/8016579</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2017</subfield><subfield code="e">20</subfield><subfield code="h">4425-4437</subfield></datafield></record></collection>
|
score |
7.401634 |