Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation
Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/...
Ausführliche Beschreibung
Autor*in: |
Sumit Gupta [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © Emerald Publishing Limited |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering computations - Swansea : Pineridge Press, 1984, 34(2017), 8, Seite 2698-2722 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2017 ; number:8 ; pages:2698-2722 |
Links: |
---|
DOI / URN: |
10.1108/EC-02-2017-0064 |
---|
Katalog-ID: |
OLC1997814609 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1997814609 | ||
003 | DE-627 | ||
005 | 20220216122257.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1108/EC-02-2017-0064 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC1997814609 | ||
035 | |a (DE-599)GBVOLC1997814609 | ||
035 | |a (PRQ)e967-ea17dee5bb3484bef17898e705926bde8fdca3716c99f32fcf04fdfeeeb5f860 | ||
035 | |a (KEY)0130901320170000034000802698numericalsimulationformagnetohydrodynamicthreedime | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.80 |2 bkl | ||
084 | |a 50.03 |2 bkl | ||
100 | 0 | |a Sumit Gupta |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work. | ||
540 | |a Nutzungsrecht: © Emerald Publishing Limited | ||
650 | 4 | |a Shear strain | |
650 | 4 | |a Shear stresses | |
650 | 4 | |a Transformations (mathematics) | |
650 | 4 | |a Temperature distribution | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Brownian movements | |
650 | 4 | |a Roundoff error | |
650 | 4 | |a Nanoparticles | |
650 | 4 | |a Boundary conditions | |
650 | 4 | |a Motion effects | |
650 | 4 | |a Three dimensional analysis | |
650 | 4 | |a Engineering | |
650 | 4 | |a Viscosity | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Magnetohydrodynamics | |
650 | 4 | |a Radiation effects | |
650 | 4 | |a Perturbation methods | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Computational fluid dynamics | |
650 | 4 | |a Nonlinear equations | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Thermal radiation | |
650 | 4 | |a Three dimensional flow | |
650 | 4 | |a Velocity | |
650 | 4 | |a Computational mathematics | |
650 | 4 | |a Nanofluids | |
650 | 4 | |a Simulation | |
650 | 4 | |a Studies | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Heat transfer | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Finite element analysis | |
650 | 4 | |a Heat conductivity | |
650 | 4 | |a Thermophoresis | |
650 | 4 | |a Fluid flow | |
700 | 0 | |a Kalpna Sharma |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Engineering computations |d Swansea : Pineridge Press, 1984 |g 34(2017), 8, Seite 2698-2722 |w (DE-627)129159395 |w (DE-600)49676-5 |w (DE-576)01445436X |x 0264-4401 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2017 |g number:8 |g pages:2698-2722 |
856 | 4 | 1 | |u http://dx.doi.org/10.1108/EC-02-2017-0064 |3 Volltext |
856 | 4 | 2 | |u http://www.emeraldinsight.com/doi/abs/10.1108/EC-02-2017-0064 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1961425917 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 54.80 |q AVZ |
936 | b | k | |a 50.03 |q AVZ |
951 | |a AR | ||
952 | |d 34 |j 2017 |e 8 |h 2698-2722 |
author_variant |
s g sg |
---|---|
matchkey_str |
article:02644401:2017----::ueiasmltofranthdoyaitreiesoafoocsonnfudihovcieon |
hierarchy_sort_str |
2017 |
bklnumber |
54.80 50.03 |
publishDate |
2017 |
allfields |
10.1108/EC-02-2017-0064 doi PQ20171125 (DE-627)OLC1997814609 (DE-599)GBVOLC1997814609 (PRQ)e967-ea17dee5bb3484bef17898e705926bde8fdca3716c99f32fcf04fdfeeeb5f860 (KEY)0130901320170000034000802698numericalsimulationformagnetohydrodynamicthreedime DE-627 ger DE-627 rakwb eng 004 DE-600 54.80 bkl 50.03 bkl Sumit Gupta verfasserin aut Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work. Nutzungsrecht: © Emerald Publishing Limited Shear strain Shear stresses Transformations (mathematics) Temperature distribution Mechanics Brownian movements Roundoff error Nanoparticles Boundary conditions Motion effects Three dimensional analysis Engineering Viscosity Computer simulation Magnetohydrodynamics Radiation effects Perturbation methods Partial differential equations Computational fluid dynamics Nonlinear equations Mathematical models Thermal radiation Three dimensional flow Velocity Computational mathematics Nanofluids Simulation Studies Applied mathematics Heat transfer Differential equations Finite element analysis Heat conductivity Thermophoresis Fluid flow Kalpna Sharma oth Enthalten in Engineering computations Swansea : Pineridge Press, 1984 34(2017), 8, Seite 2698-2722 (DE-627)129159395 (DE-600)49676-5 (DE-576)01445436X 0264-4401 nnns volume:34 year:2017 number:8 pages:2698-2722 http://dx.doi.org/10.1108/EC-02-2017-0064 Volltext http://www.emeraldinsight.com/doi/abs/10.1108/EC-02-2017-0064 https://search.proquest.com/docview/1961425917 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.80 AVZ 50.03 AVZ AR 34 2017 8 2698-2722 |
spelling |
10.1108/EC-02-2017-0064 doi PQ20171125 (DE-627)OLC1997814609 (DE-599)GBVOLC1997814609 (PRQ)e967-ea17dee5bb3484bef17898e705926bde8fdca3716c99f32fcf04fdfeeeb5f860 (KEY)0130901320170000034000802698numericalsimulationformagnetohydrodynamicthreedime DE-627 ger DE-627 rakwb eng 004 DE-600 54.80 bkl 50.03 bkl Sumit Gupta verfasserin aut Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work. Nutzungsrecht: © Emerald Publishing Limited Shear strain Shear stresses Transformations (mathematics) Temperature distribution Mechanics Brownian movements Roundoff error Nanoparticles Boundary conditions Motion effects Three dimensional analysis Engineering Viscosity Computer simulation Magnetohydrodynamics Radiation effects Perturbation methods Partial differential equations Computational fluid dynamics Nonlinear equations Mathematical models Thermal radiation Three dimensional flow Velocity Computational mathematics Nanofluids Simulation Studies Applied mathematics Heat transfer Differential equations Finite element analysis Heat conductivity Thermophoresis Fluid flow Kalpna Sharma oth Enthalten in Engineering computations Swansea : Pineridge Press, 1984 34(2017), 8, Seite 2698-2722 (DE-627)129159395 (DE-600)49676-5 (DE-576)01445436X 0264-4401 nnns volume:34 year:2017 number:8 pages:2698-2722 http://dx.doi.org/10.1108/EC-02-2017-0064 Volltext http://www.emeraldinsight.com/doi/abs/10.1108/EC-02-2017-0064 https://search.proquest.com/docview/1961425917 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.80 AVZ 50.03 AVZ AR 34 2017 8 2698-2722 |
allfields_unstemmed |
10.1108/EC-02-2017-0064 doi PQ20171125 (DE-627)OLC1997814609 (DE-599)GBVOLC1997814609 (PRQ)e967-ea17dee5bb3484bef17898e705926bde8fdca3716c99f32fcf04fdfeeeb5f860 (KEY)0130901320170000034000802698numericalsimulationformagnetohydrodynamicthreedime DE-627 ger DE-627 rakwb eng 004 DE-600 54.80 bkl 50.03 bkl Sumit Gupta verfasserin aut Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work. Nutzungsrecht: © Emerald Publishing Limited Shear strain Shear stresses Transformations (mathematics) Temperature distribution Mechanics Brownian movements Roundoff error Nanoparticles Boundary conditions Motion effects Three dimensional analysis Engineering Viscosity Computer simulation Magnetohydrodynamics Radiation effects Perturbation methods Partial differential equations Computational fluid dynamics Nonlinear equations Mathematical models Thermal radiation Three dimensional flow Velocity Computational mathematics Nanofluids Simulation Studies Applied mathematics Heat transfer Differential equations Finite element analysis Heat conductivity Thermophoresis Fluid flow Kalpna Sharma oth Enthalten in Engineering computations Swansea : Pineridge Press, 1984 34(2017), 8, Seite 2698-2722 (DE-627)129159395 (DE-600)49676-5 (DE-576)01445436X 0264-4401 nnns volume:34 year:2017 number:8 pages:2698-2722 http://dx.doi.org/10.1108/EC-02-2017-0064 Volltext http://www.emeraldinsight.com/doi/abs/10.1108/EC-02-2017-0064 https://search.proquest.com/docview/1961425917 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.80 AVZ 50.03 AVZ AR 34 2017 8 2698-2722 |
allfieldsGer |
10.1108/EC-02-2017-0064 doi PQ20171125 (DE-627)OLC1997814609 (DE-599)GBVOLC1997814609 (PRQ)e967-ea17dee5bb3484bef17898e705926bde8fdca3716c99f32fcf04fdfeeeb5f860 (KEY)0130901320170000034000802698numericalsimulationformagnetohydrodynamicthreedime DE-627 ger DE-627 rakwb eng 004 DE-600 54.80 bkl 50.03 bkl Sumit Gupta verfasserin aut Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work. Nutzungsrecht: © Emerald Publishing Limited Shear strain Shear stresses Transformations (mathematics) Temperature distribution Mechanics Brownian movements Roundoff error Nanoparticles Boundary conditions Motion effects Three dimensional analysis Engineering Viscosity Computer simulation Magnetohydrodynamics Radiation effects Perturbation methods Partial differential equations Computational fluid dynamics Nonlinear equations Mathematical models Thermal radiation Three dimensional flow Velocity Computational mathematics Nanofluids Simulation Studies Applied mathematics Heat transfer Differential equations Finite element analysis Heat conductivity Thermophoresis Fluid flow Kalpna Sharma oth Enthalten in Engineering computations Swansea : Pineridge Press, 1984 34(2017), 8, Seite 2698-2722 (DE-627)129159395 (DE-600)49676-5 (DE-576)01445436X 0264-4401 nnns volume:34 year:2017 number:8 pages:2698-2722 http://dx.doi.org/10.1108/EC-02-2017-0064 Volltext http://www.emeraldinsight.com/doi/abs/10.1108/EC-02-2017-0064 https://search.proquest.com/docview/1961425917 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.80 AVZ 50.03 AVZ AR 34 2017 8 2698-2722 |
allfieldsSound |
10.1108/EC-02-2017-0064 doi PQ20171125 (DE-627)OLC1997814609 (DE-599)GBVOLC1997814609 (PRQ)e967-ea17dee5bb3484bef17898e705926bde8fdca3716c99f32fcf04fdfeeeb5f860 (KEY)0130901320170000034000802698numericalsimulationformagnetohydrodynamicthreedime DE-627 ger DE-627 rakwb eng 004 DE-600 54.80 bkl 50.03 bkl Sumit Gupta verfasserin aut Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work. Nutzungsrecht: © Emerald Publishing Limited Shear strain Shear stresses Transformations (mathematics) Temperature distribution Mechanics Brownian movements Roundoff error Nanoparticles Boundary conditions Motion effects Three dimensional analysis Engineering Viscosity Computer simulation Magnetohydrodynamics Radiation effects Perturbation methods Partial differential equations Computational fluid dynamics Nonlinear equations Mathematical models Thermal radiation Three dimensional flow Velocity Computational mathematics Nanofluids Simulation Studies Applied mathematics Heat transfer Differential equations Finite element analysis Heat conductivity Thermophoresis Fluid flow Kalpna Sharma oth Enthalten in Engineering computations Swansea : Pineridge Press, 1984 34(2017), 8, Seite 2698-2722 (DE-627)129159395 (DE-600)49676-5 (DE-576)01445436X 0264-4401 nnns volume:34 year:2017 number:8 pages:2698-2722 http://dx.doi.org/10.1108/EC-02-2017-0064 Volltext http://www.emeraldinsight.com/doi/abs/10.1108/EC-02-2017-0064 https://search.proquest.com/docview/1961425917 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.80 AVZ 50.03 AVZ AR 34 2017 8 2698-2722 |
language |
English |
source |
Enthalten in Engineering computations 34(2017), 8, Seite 2698-2722 volume:34 year:2017 number:8 pages:2698-2722 |
sourceStr |
Enthalten in Engineering computations 34(2017), 8, Seite 2698-2722 volume:34 year:2017 number:8 pages:2698-2722 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Shear strain Shear stresses Transformations (mathematics) Temperature distribution Mechanics Brownian movements Roundoff error Nanoparticles Boundary conditions Motion effects Three dimensional analysis Engineering Viscosity Computer simulation Magnetohydrodynamics Radiation effects Perturbation methods Partial differential equations Computational fluid dynamics Nonlinear equations Mathematical models Thermal radiation Three dimensional flow Velocity Computational mathematics Nanofluids Simulation Studies Applied mathematics Heat transfer Differential equations Finite element analysis Heat conductivity Thermophoresis Fluid flow |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Engineering computations |
authorswithroles_txt_mv |
Sumit Gupta @@aut@@ Kalpna Sharma @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129159395 |
dewey-sort |
14 |
id |
OLC1997814609 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997814609</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216122257.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1108/EC-02-2017-0064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997814609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997814609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)e967-ea17dee5bb3484bef17898e705926bde8fdca3716c99f32fcf04fdfeeeb5f860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0130901320170000034000802698numericalsimulationformagnetohydrodynamicthreedime</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sumit Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Emerald Publishing Limited</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear stresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformations (mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brownian movements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roundoff error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three dimensional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscosity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetohydrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three dimensional flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermophoresis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid flow</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kalpna Sharma</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering computations</subfield><subfield code="d">Swansea : Pineridge Press, 1984</subfield><subfield code="g">34(2017), 8, Seite 2698-2722</subfield><subfield code="w">(DE-627)129159395</subfield><subfield code="w">(DE-600)49676-5</subfield><subfield code="w">(DE-576)01445436X</subfield><subfield code="x">0264-4401</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:2698-2722</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1108/EC-02-2017-0064</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.emeraldinsight.com/doi/abs/10.1108/EC-02-2017-0064</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1961425917</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">2698-2722</subfield></datafield></record></collection>
|
author |
Sumit Gupta |
spellingShingle |
Sumit Gupta ddc 004 bkl 54.80 bkl 50.03 misc Shear strain misc Shear stresses misc Transformations (mathematics) misc Temperature distribution misc Mechanics misc Brownian movements misc Roundoff error misc Nanoparticles misc Boundary conditions misc Motion effects misc Three dimensional analysis misc Engineering misc Viscosity misc Computer simulation misc Magnetohydrodynamics misc Radiation effects misc Perturbation methods misc Partial differential equations misc Computational fluid dynamics misc Nonlinear equations misc Mathematical models misc Thermal radiation misc Three dimensional flow misc Velocity misc Computational mathematics misc Nanofluids misc Simulation misc Studies misc Applied mathematics misc Heat transfer misc Differential equations misc Finite element analysis misc Heat conductivity misc Thermophoresis misc Fluid flow Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation |
authorStr |
Sumit Gupta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129159395 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0264-4401 |
topic_title |
004 DE-600 54.80 bkl 50.03 bkl Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation Shear strain Shear stresses Transformations (mathematics) Temperature distribution Mechanics Brownian movements Roundoff error Nanoparticles Boundary conditions Motion effects Three dimensional analysis Engineering Viscosity Computer simulation Magnetohydrodynamics Radiation effects Perturbation methods Partial differential equations Computational fluid dynamics Nonlinear equations Mathematical models Thermal radiation Three dimensional flow Velocity Computational mathematics Nanofluids Simulation Studies Applied mathematics Heat transfer Differential equations Finite element analysis Heat conductivity Thermophoresis Fluid flow |
topic |
ddc 004 bkl 54.80 bkl 50.03 misc Shear strain misc Shear stresses misc Transformations (mathematics) misc Temperature distribution misc Mechanics misc Brownian movements misc Roundoff error misc Nanoparticles misc Boundary conditions misc Motion effects misc Three dimensional analysis misc Engineering misc Viscosity misc Computer simulation misc Magnetohydrodynamics misc Radiation effects misc Perturbation methods misc Partial differential equations misc Computational fluid dynamics misc Nonlinear equations misc Mathematical models misc Thermal radiation misc Three dimensional flow misc Velocity misc Computational mathematics misc Nanofluids misc Simulation misc Studies misc Applied mathematics misc Heat transfer misc Differential equations misc Finite element analysis misc Heat conductivity misc Thermophoresis misc Fluid flow |
topic_unstemmed |
ddc 004 bkl 54.80 bkl 50.03 misc Shear strain misc Shear stresses misc Transformations (mathematics) misc Temperature distribution misc Mechanics misc Brownian movements misc Roundoff error misc Nanoparticles misc Boundary conditions misc Motion effects misc Three dimensional analysis misc Engineering misc Viscosity misc Computer simulation misc Magnetohydrodynamics misc Radiation effects misc Perturbation methods misc Partial differential equations misc Computational fluid dynamics misc Nonlinear equations misc Mathematical models misc Thermal radiation misc Three dimensional flow misc Velocity misc Computational mathematics misc Nanofluids misc Simulation misc Studies misc Applied mathematics misc Heat transfer misc Differential equations misc Finite element analysis misc Heat conductivity misc Thermophoresis misc Fluid flow |
topic_browse |
ddc 004 bkl 54.80 bkl 50.03 misc Shear strain misc Shear stresses misc Transformations (mathematics) misc Temperature distribution misc Mechanics misc Brownian movements misc Roundoff error misc Nanoparticles misc Boundary conditions misc Motion effects misc Three dimensional analysis misc Engineering misc Viscosity misc Computer simulation misc Magnetohydrodynamics misc Radiation effects misc Perturbation methods misc Partial differential equations misc Computational fluid dynamics misc Nonlinear equations misc Mathematical models misc Thermal radiation misc Three dimensional flow misc Velocity misc Computational mathematics misc Nanofluids misc Simulation misc Studies misc Applied mathematics misc Heat transfer misc Differential equations misc Finite element analysis misc Heat conductivity misc Thermophoresis misc Fluid flow |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
k s ks |
hierarchy_parent_title |
Engineering computations |
hierarchy_parent_id |
129159395 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Engineering computations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129159395 (DE-600)49676-5 (DE-576)01445436X |
title |
Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation |
ctrlnum |
(DE-627)OLC1997814609 (DE-599)GBVOLC1997814609 (PRQ)e967-ea17dee5bb3484bef17898e705926bde8fdca3716c99f32fcf04fdfeeeb5f860 (KEY)0130901320170000034000802698numericalsimulationformagnetohydrodynamicthreedime |
title_full |
Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation |
author_sort |
Sumit Gupta |
journal |
Engineering computations |
journalStr |
Engineering computations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2698 |
author_browse |
Sumit Gupta |
container_volume |
34 |
class |
004 DE-600 54.80 bkl 50.03 bkl |
format_se |
Aufsätze |
author-letter |
Sumit Gupta |
doi_str_mv |
10.1108/EC-02-2017-0064 |
dewey-full |
004 |
title_sort |
numerical simulation for magnetohydrodynamic three dimensional flow of casson nanofluid with convective boundary conditions and thermal radiation |
title_auth |
Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation |
abstract |
Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work. |
abstractGer |
Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work. |
abstract_unstemmed |
Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
8 |
title_short |
Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation |
url |
http://dx.doi.org/10.1108/EC-02-2017-0064 http://www.emeraldinsight.com/doi/abs/10.1108/EC-02-2017-0064 https://search.proquest.com/docview/1961425917 |
remote_bool |
false |
author2 |
Kalpna Sharma |
author2Str |
Kalpna Sharma |
ppnlink |
129159395 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1108/EC-02-2017-0064 |
up_date |
2024-07-04T03:45:22.143Z |
_version_ |
1803618586095255552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1997814609</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216122257.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1108/EC-02-2017-0064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1997814609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1997814609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)e967-ea17dee5bb3484bef17898e705926bde8fdca3716c99f32fcf04fdfeeeb5f860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0130901320170000034000802698numericalsimulationformagnetohydrodynamicthreedime</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sumit Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose The purpose of this study is to analyze magnetohydrodynamic three-dimensional flow of Casson nanofluid over a stretching sheet in presence of thermophoresis and Brownian motion effects. In contrast, the convective surface boundary conditions with the effects of radiation are applied. Design/methodology/approach The governing partial differential equations are transformed into highly nonlinear coupled ordinary differential equations consisting of the momentum, energy and nanoparticle concentration via suitable similarity transformations, which are then solved the using optimal homotopy analysis method (OHAM) a Mathematica Package BVPh2.0. Findings The influence of emerging physical flow parameters on fluid velocity component, temperature distribution and nanoparticle concentration are discussed in detail. Also, an OHAM solution demonstrates very good correlation with those obtained in the previously published results. It is noticed that OHAM can overcome the earlier restriction, assumptions and limitation of traditional perturbation method. The main advantage of this method is that OHAM can be applied directly to nonlinear differential equations without using linearization and round-off errors, and therefore, it cannot be affected by error associated to discretization. Originality/value Here the approximate solutions are compared with the numerical results published in earlier work.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Emerald Publishing Limited</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear stresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformations (mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brownian movements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roundoff error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three dimensional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscosity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetohydrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three dimensional flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermophoresis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid flow</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kalpna Sharma</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering computations</subfield><subfield code="d">Swansea : Pineridge Press, 1984</subfield><subfield code="g">34(2017), 8, Seite 2698-2722</subfield><subfield code="w">(DE-627)129159395</subfield><subfield code="w">(DE-600)49676-5</subfield><subfield code="w">(DE-576)01445436X</subfield><subfield code="x">0264-4401</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:2698-2722</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1108/EC-02-2017-0064</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.emeraldinsight.com/doi/abs/10.1108/EC-02-2017-0064</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1961425917</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">2698-2722</subfield></datafield></record></collection>
|
score |
7.4005556 |