Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection
The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in...
Ausführliche Beschreibung
Autor*in: |
Jing Li [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Polymers & polymer composites - Shrewsbury : RAPRA Technology Ltd., 1993, 25(2017), 8, Seite 603 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2017 ; number:8 ; pages:603 |
Links: |
---|
Katalog-ID: |
OLC1998001466 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1998001466 | ||
003 | DE-627 | ||
005 | 20230516020926.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1998001466 | ||
035 | |a (DE-599)GBVOLC1998001466 | ||
035 | |a (PRQ)p1652-a5144862d6a33f56694a1fac50ed97236dab3ad3a915cf2c2aa64c9ebad42f4b0 | ||
035 | |a (KEY)0168587220170000025000800603facilefabricationofnanoclayreinforcedwaterborneorg | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q ZDB |
084 | |a 51.00 |2 bkl | ||
100 | 0 | |a Jing Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production. | ||
650 | 4 | |a Ambient temperature | |
650 | 4 | |a Organic coatings | |
650 | 4 | |a Composite materials | |
650 | 4 | |a Clay | |
650 | 4 | |a Mass production | |
650 | 4 | |a Monolayers | |
650 | 4 | |a Coupling agents | |
650 | 4 | |a Exfoliation | |
650 | 4 | |a Latex | |
650 | 4 | |a Blending | |
650 | 4 | |a Clays | |
650 | 4 | |a Corrosion effects | |
650 | 4 | |a Carbon | |
650 | 4 | |a Protective coatings | |
650 | 4 | |a Properties (attributes) | |
650 | 4 | |a Nanocomposites | |
650 | 4 | |a Substrates | |
650 | 4 | |a Reinforcement | |
650 | 4 | |a Corrosion | |
650 | 4 | |a Corrosion prevention | |
650 | 4 | |a Polymers | |
650 | 4 | |a Coating effects | |
650 | 4 | |a Mechanical properties | |
650 | 4 | |a Clay (material) | |
700 | 0 | |a Yuan Ma |4 oth | |
700 | 0 | |a Jiayun Yang |4 oth | |
700 | 0 | |a Yaya Li |4 oth | |
700 | 0 | |a Yigang Dai |4 oth | |
700 | 0 | |a Junhe Yang |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Polymers & polymer composites |d Shrewsbury : RAPRA Technology Ltd., 1993 |g 25(2017), 8, Seite 603 |w (DE-627)131187449 |w (DE-600)1145951-7 |w (DE-576)9131187447 |x 0967-3911 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2017 |g number:8 |g pages:603 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1923968491 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 51.00 |q AVZ |
951 | |a AR | ||
952 | |d 25 |j 2017 |e 8 |h 603 |
author_variant |
j l jl |
---|---|
matchkey_str |
article:09673911:2017----::aiearctoonncarifrewtronogncotns |
hierarchy_sort_str |
2017 |
bklnumber |
51.00 |
publishDate |
2017 |
allfields |
PQ20171228 (DE-627)OLC1998001466 (DE-599)GBVOLC1998001466 (PRQ)p1652-a5144862d6a33f56694a1fac50ed97236dab3ad3a915cf2c2aa64c9ebad42f4b0 (KEY)0168587220170000025000800603facilefabricationofnanoclayreinforcedwaterborneorg DE-627 ger DE-627 rakwb eng 660 ZDB 51.00 bkl Jing Li verfasserin aut Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production. Ambient temperature Organic coatings Composite materials Clay Mass production Monolayers Coupling agents Exfoliation Latex Blending Clays Corrosion effects Carbon Protective coatings Properties (attributes) Nanocomposites Substrates Reinforcement Corrosion Corrosion prevention Polymers Coating effects Mechanical properties Clay (material) Yuan Ma oth Jiayun Yang oth Yaya Li oth Yigang Dai oth Junhe Yang oth Enthalten in Polymers & polymer composites Shrewsbury : RAPRA Technology Ltd., 1993 25(2017), 8, Seite 603 (DE-627)131187449 (DE-600)1145951-7 (DE-576)9131187447 0967-3911 nnns volume:25 year:2017 number:8 pages:603 https://search.proquest.com/docview/1923968491 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 51.00 AVZ AR 25 2017 8 603 |
spelling |
PQ20171228 (DE-627)OLC1998001466 (DE-599)GBVOLC1998001466 (PRQ)p1652-a5144862d6a33f56694a1fac50ed97236dab3ad3a915cf2c2aa64c9ebad42f4b0 (KEY)0168587220170000025000800603facilefabricationofnanoclayreinforcedwaterborneorg DE-627 ger DE-627 rakwb eng 660 ZDB 51.00 bkl Jing Li verfasserin aut Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production. Ambient temperature Organic coatings Composite materials Clay Mass production Monolayers Coupling agents Exfoliation Latex Blending Clays Corrosion effects Carbon Protective coatings Properties (attributes) Nanocomposites Substrates Reinforcement Corrosion Corrosion prevention Polymers Coating effects Mechanical properties Clay (material) Yuan Ma oth Jiayun Yang oth Yaya Li oth Yigang Dai oth Junhe Yang oth Enthalten in Polymers & polymer composites Shrewsbury : RAPRA Technology Ltd., 1993 25(2017), 8, Seite 603 (DE-627)131187449 (DE-600)1145951-7 (DE-576)9131187447 0967-3911 nnns volume:25 year:2017 number:8 pages:603 https://search.proquest.com/docview/1923968491 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 51.00 AVZ AR 25 2017 8 603 |
allfields_unstemmed |
PQ20171228 (DE-627)OLC1998001466 (DE-599)GBVOLC1998001466 (PRQ)p1652-a5144862d6a33f56694a1fac50ed97236dab3ad3a915cf2c2aa64c9ebad42f4b0 (KEY)0168587220170000025000800603facilefabricationofnanoclayreinforcedwaterborneorg DE-627 ger DE-627 rakwb eng 660 ZDB 51.00 bkl Jing Li verfasserin aut Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production. Ambient temperature Organic coatings Composite materials Clay Mass production Monolayers Coupling agents Exfoliation Latex Blending Clays Corrosion effects Carbon Protective coatings Properties (attributes) Nanocomposites Substrates Reinforcement Corrosion Corrosion prevention Polymers Coating effects Mechanical properties Clay (material) Yuan Ma oth Jiayun Yang oth Yaya Li oth Yigang Dai oth Junhe Yang oth Enthalten in Polymers & polymer composites Shrewsbury : RAPRA Technology Ltd., 1993 25(2017), 8, Seite 603 (DE-627)131187449 (DE-600)1145951-7 (DE-576)9131187447 0967-3911 nnns volume:25 year:2017 number:8 pages:603 https://search.proquest.com/docview/1923968491 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 51.00 AVZ AR 25 2017 8 603 |
allfieldsGer |
PQ20171228 (DE-627)OLC1998001466 (DE-599)GBVOLC1998001466 (PRQ)p1652-a5144862d6a33f56694a1fac50ed97236dab3ad3a915cf2c2aa64c9ebad42f4b0 (KEY)0168587220170000025000800603facilefabricationofnanoclayreinforcedwaterborneorg DE-627 ger DE-627 rakwb eng 660 ZDB 51.00 bkl Jing Li verfasserin aut Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production. Ambient temperature Organic coatings Composite materials Clay Mass production Monolayers Coupling agents Exfoliation Latex Blending Clays Corrosion effects Carbon Protective coatings Properties (attributes) Nanocomposites Substrates Reinforcement Corrosion Corrosion prevention Polymers Coating effects Mechanical properties Clay (material) Yuan Ma oth Jiayun Yang oth Yaya Li oth Yigang Dai oth Junhe Yang oth Enthalten in Polymers & polymer composites Shrewsbury : RAPRA Technology Ltd., 1993 25(2017), 8, Seite 603 (DE-627)131187449 (DE-600)1145951-7 (DE-576)9131187447 0967-3911 nnns volume:25 year:2017 number:8 pages:603 https://search.proquest.com/docview/1923968491 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 51.00 AVZ AR 25 2017 8 603 |
allfieldsSound |
PQ20171228 (DE-627)OLC1998001466 (DE-599)GBVOLC1998001466 (PRQ)p1652-a5144862d6a33f56694a1fac50ed97236dab3ad3a915cf2c2aa64c9ebad42f4b0 (KEY)0168587220170000025000800603facilefabricationofnanoclayreinforcedwaterborneorg DE-627 ger DE-627 rakwb eng 660 ZDB 51.00 bkl Jing Li verfasserin aut Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production. Ambient temperature Organic coatings Composite materials Clay Mass production Monolayers Coupling agents Exfoliation Latex Blending Clays Corrosion effects Carbon Protective coatings Properties (attributes) Nanocomposites Substrates Reinforcement Corrosion Corrosion prevention Polymers Coating effects Mechanical properties Clay (material) Yuan Ma oth Jiayun Yang oth Yaya Li oth Yigang Dai oth Junhe Yang oth Enthalten in Polymers & polymer composites Shrewsbury : RAPRA Technology Ltd., 1993 25(2017), 8, Seite 603 (DE-627)131187449 (DE-600)1145951-7 (DE-576)9131187447 0967-3911 nnns volume:25 year:2017 number:8 pages:603 https://search.proquest.com/docview/1923968491 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 51.00 AVZ AR 25 2017 8 603 |
language |
English |
source |
Enthalten in Polymers & polymer composites 25(2017), 8, Seite 603 volume:25 year:2017 number:8 pages:603 |
sourceStr |
Enthalten in Polymers & polymer composites 25(2017), 8, Seite 603 volume:25 year:2017 number:8 pages:603 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ambient temperature Organic coatings Composite materials Clay Mass production Monolayers Coupling agents Exfoliation Latex Blending Clays Corrosion effects Carbon Protective coatings Properties (attributes) Nanocomposites Substrates Reinforcement Corrosion Corrosion prevention Polymers Coating effects Mechanical properties Clay (material) |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Polymers & polymer composites |
authorswithroles_txt_mv |
Jing Li @@aut@@ Yuan Ma @@oth@@ Jiayun Yang @@oth@@ Yaya Li @@oth@@ Yigang Dai @@oth@@ Junhe Yang @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
131187449 |
dewey-sort |
3660 |
id |
OLC1998001466 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998001466</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230516020926.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998001466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998001466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1652-a5144862d6a33f56694a1fac50ed97236dab3ad3a915cf2c2aa64c9ebad42f4b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0168587220170000025000800603facilefabricationofnanoclayreinforcedwaterborneorg</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ambient temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic coatings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composite materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monolayers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling agents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exfoliation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Latex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blending</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protective coatings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Properties (attributes)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion prevention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coating effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clay (material)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan Ma</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiayun Yang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaya Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yigang Dai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junhe Yang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymers & polymer composites</subfield><subfield code="d">Shrewsbury : RAPRA Technology Ltd., 1993</subfield><subfield code="g">25(2017), 8, Seite 603</subfield><subfield code="w">(DE-627)131187449</subfield><subfield code="w">(DE-600)1145951-7</subfield><subfield code="w">(DE-576)9131187447</subfield><subfield code="x">0967-3911</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:603</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1923968491</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">603</subfield></datafield></record></collection>
|
author |
Jing Li |
spellingShingle |
Jing Li ddc 660 bkl 51.00 misc Ambient temperature misc Organic coatings misc Composite materials misc Clay misc Mass production misc Monolayers misc Coupling agents misc Exfoliation misc Latex misc Blending misc Clays misc Corrosion effects misc Carbon misc Protective coatings misc Properties (attributes) misc Nanocomposites misc Substrates misc Reinforcement misc Corrosion misc Corrosion prevention misc Polymers misc Coating effects misc Mechanical properties misc Clay (material) Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection |
authorStr |
Jing Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131187449 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0967-3911 |
topic_title |
660 ZDB 51.00 bkl Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection Ambient temperature Organic coatings Composite materials Clay Mass production Monolayers Coupling agents Exfoliation Latex Blending Clays Corrosion effects Carbon Protective coatings Properties (attributes) Nanocomposites Substrates Reinforcement Corrosion Corrosion prevention Polymers Coating effects Mechanical properties Clay (material) |
topic |
ddc 660 bkl 51.00 misc Ambient temperature misc Organic coatings misc Composite materials misc Clay misc Mass production misc Monolayers misc Coupling agents misc Exfoliation misc Latex misc Blending misc Clays misc Corrosion effects misc Carbon misc Protective coatings misc Properties (attributes) misc Nanocomposites misc Substrates misc Reinforcement misc Corrosion misc Corrosion prevention misc Polymers misc Coating effects misc Mechanical properties misc Clay (material) |
topic_unstemmed |
ddc 660 bkl 51.00 misc Ambient temperature misc Organic coatings misc Composite materials misc Clay misc Mass production misc Monolayers misc Coupling agents misc Exfoliation misc Latex misc Blending misc Clays misc Corrosion effects misc Carbon misc Protective coatings misc Properties (attributes) misc Nanocomposites misc Substrates misc Reinforcement misc Corrosion misc Corrosion prevention misc Polymers misc Coating effects misc Mechanical properties misc Clay (material) |
topic_browse |
ddc 660 bkl 51.00 misc Ambient temperature misc Organic coatings misc Composite materials misc Clay misc Mass production misc Monolayers misc Coupling agents misc Exfoliation misc Latex misc Blending misc Clays misc Corrosion effects misc Carbon misc Protective coatings misc Properties (attributes) misc Nanocomposites misc Substrates misc Reinforcement misc Corrosion misc Corrosion prevention misc Polymers misc Coating effects misc Mechanical properties misc Clay (material) |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y m ym j y jy y l yl y d yd j y jy |
hierarchy_parent_title |
Polymers & polymer composites |
hierarchy_parent_id |
131187449 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Polymers & polymer composites |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131187449 (DE-600)1145951-7 (DE-576)9131187447 |
title |
Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection |
ctrlnum |
(DE-627)OLC1998001466 (DE-599)GBVOLC1998001466 (PRQ)p1652-a5144862d6a33f56694a1fac50ed97236dab3ad3a915cf2c2aa64c9ebad42f4b0 (KEY)0168587220170000025000800603facilefabricationofnanoclayreinforcedwaterborneorg |
title_full |
Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection |
author_sort |
Jing Li |
journal |
Polymers & polymer composites |
journalStr |
Polymers & polymer composites |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
603 |
author_browse |
Jing Li |
container_volume |
25 |
class |
660 ZDB 51.00 bkl |
format_se |
Aufsätze |
author-letter |
Jing Li |
dewey-full |
660 |
title_sort |
facile fabrication of nanoclay reinforced waterborne organic coatings for corrosion protection |
title_auth |
Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection |
abstract |
The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production. |
abstractGer |
The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production. |
abstract_unstemmed |
The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
8 |
title_short |
Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection |
url |
https://search.proquest.com/docview/1923968491 |
remote_bool |
false |
author2 |
Yuan Ma Jiayun Yang Yaya Li Yigang Dai Junhe Yang |
author2Str |
Yuan Ma Jiayun Yang Yaya Li Yigang Dai Junhe Yang |
ppnlink |
131187449 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
up_date |
2024-07-04T04:09:44.249Z |
_version_ |
1803620119219273728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998001466</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230516020926.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998001466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998001466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1652-a5144862d6a33f56694a1fac50ed97236dab3ad3a915cf2c2aa64c9ebad42f4b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0168587220170000025000800603facilefabricationofnanoclayreinforcedwaterborneorg</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Facile Fabrication of Nanoclay Reinforced Waterborne Organic Coatings for Corrosion Protection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The reinforcement effect of nanoclay on the corrosion protection properties of waterborne thin organic coatings was studied. The coating matrix was a commercial formulation for galvalume steel substrates. Two kinds of clays (laponite RDS and optigel WH) were employed as the barrier reinforcement in the composite coatings. Both kinds of the clays were exfoliated into monolayers of silicate with disordered structures at a filler content of 2 wt.%. Facile exfoliation and effective dispersion of clay was achieved with the assistance of a titanate coupling agent. The corrosion protection properties of the composite coatings were significantly improved with the addition of 3 wt.% laponite RDS or 2 wt.% optigel WH. The addition of an excessive amount of clay decreased the anticorrosion properties of the composite coatings. The fabrication methods of nanoclay-reinforced thin organic coatings involved only physical blending and latex mixing at ambient temperature, which can be easily scaled-up for mass production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ambient temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic coatings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composite materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monolayers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling agents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exfoliation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Latex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blending</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protective coatings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Properties (attributes)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion prevention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coating effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clay (material)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan Ma</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiayun Yang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaya Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yigang Dai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junhe Yang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymers & polymer composites</subfield><subfield code="d">Shrewsbury : RAPRA Technology Ltd., 1993</subfield><subfield code="g">25(2017), 8, Seite 603</subfield><subfield code="w">(DE-627)131187449</subfield><subfield code="w">(DE-600)1145951-7</subfield><subfield code="w">(DE-576)9131187447</subfield><subfield code="x">0967-3911</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:603</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1923968491</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">603</subfield></datafield></record></collection>
|
score |
7.400337 |