On l1 stability of switched positive singular systems with time‐varying delay
This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular val...
Ausführliche Beschreibung
Autor*in: |
Li, Shuo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
switched positive singular systems |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of robust and nonlinear control - Chichester : Wiley, 1991, 27(2017), 16, Seite 2798-2812 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2017 ; number:16 ; pages:2798-2812 |
Links: |
---|
DOI / URN: |
10.1002/rnc.3711 |
---|
Katalog-ID: |
OLC1998171523 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1998171523 | ||
003 | DE-627 | ||
005 | 20220216165659.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/rnc.3711 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1998171523 | ||
035 | |a (DE-599)GBVOLC1998171523 | ||
035 | |a (PRQ)p951-6840c94d3a90b6ec86946ea475ed2aa45bc8d72e4ba7e6d35046c11b25445c5d3 | ||
035 | |a (KEY)0202774720170000027001602798onl1stabilityofswitchedpositivesingularsystemswith | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ZDB |
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Li, Shuo |e verfasserin |4 aut | |
245 | 1 | 0 | |a On l1 stability of switched positive singular systems with time‐varying delay |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. | ||
650 | 4 | |a exponential stability | |
650 | 4 | |a gain performance | |
650 | 4 | |a time‐varying delay | |
650 | 4 | |a average dwell time | |
650 | 4 | |a switched positive singular systems | |
650 | 4 | |a co‐positive linear Lyapunov function | |
650 | 4 | |a Convexity | |
650 | 4 | |a Switching | |
650 | 4 | |a System effectiveness | |
650 | 4 | |a Dwell time | |
650 | 4 | |a Singular value decomposition | |
650 | 4 | |a Stability analysis | |
650 | 4 | |a Discrete time systems | |
650 | 4 | |a Delay | |
650 | 4 | |a Linear programming | |
650 | 4 | |a Decay rate | |
700 | 1 | |a Lin, Hai |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of robust and nonlinear control |d Chichester : Wiley, 1991 |g 27(2017), 16, Seite 2798-2812 |w (DE-627)13098311X |w (DE-600)1076540-2 |w (DE-576)027065731 |x 1049-8923 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2017 |g number:16 |g pages:2798-2812 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/rnc.3711 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/rnc.3711/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1951011473 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 27 |j 2017 |e 16 |h 2798-2812 |
author_variant |
s l sl |
---|---|
matchkey_str |
article:10498923:2017----::n1tbltosicepstvsnuassesi |
hierarchy_sort_str |
2017 |
bklnumber |
53.00 |
publishDate |
2017 |
allfields |
10.1002/rnc.3711 doi PQ20171228 (DE-627)OLC1998171523 (DE-599)GBVOLC1998171523 (PRQ)p951-6840c94d3a90b6ec86946ea475ed2aa45bc8d72e4ba7e6d35046c11b25445c5d3 (KEY)0202774720170000027001602798onl1stabilityofswitchedpositivesingularsystemswith DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Li, Shuo verfasserin aut On l1 stability of switched positive singular systems with time‐varying delay 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. exponential stability gain performance time‐varying delay average dwell time switched positive singular systems co‐positive linear Lyapunov function Convexity Switching System effectiveness Dwell time Singular value decomposition Stability analysis Discrete time systems Delay Linear programming Decay rate Lin, Hai oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 27(2017), 16, Seite 2798-2812 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:27 year:2017 number:16 pages:2798-2812 http://dx.doi.org/10.1002/rnc.3711 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3711/abstract https://search.proquest.com/docview/1951011473 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 27 2017 16 2798-2812 |
spelling |
10.1002/rnc.3711 doi PQ20171228 (DE-627)OLC1998171523 (DE-599)GBVOLC1998171523 (PRQ)p951-6840c94d3a90b6ec86946ea475ed2aa45bc8d72e4ba7e6d35046c11b25445c5d3 (KEY)0202774720170000027001602798onl1stabilityofswitchedpositivesingularsystemswith DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Li, Shuo verfasserin aut On l1 stability of switched positive singular systems with time‐varying delay 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. exponential stability gain performance time‐varying delay average dwell time switched positive singular systems co‐positive linear Lyapunov function Convexity Switching System effectiveness Dwell time Singular value decomposition Stability analysis Discrete time systems Delay Linear programming Decay rate Lin, Hai oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 27(2017), 16, Seite 2798-2812 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:27 year:2017 number:16 pages:2798-2812 http://dx.doi.org/10.1002/rnc.3711 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3711/abstract https://search.proquest.com/docview/1951011473 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 27 2017 16 2798-2812 |
allfields_unstemmed |
10.1002/rnc.3711 doi PQ20171228 (DE-627)OLC1998171523 (DE-599)GBVOLC1998171523 (PRQ)p951-6840c94d3a90b6ec86946ea475ed2aa45bc8d72e4ba7e6d35046c11b25445c5d3 (KEY)0202774720170000027001602798onl1stabilityofswitchedpositivesingularsystemswith DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Li, Shuo verfasserin aut On l1 stability of switched positive singular systems with time‐varying delay 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. exponential stability gain performance time‐varying delay average dwell time switched positive singular systems co‐positive linear Lyapunov function Convexity Switching System effectiveness Dwell time Singular value decomposition Stability analysis Discrete time systems Delay Linear programming Decay rate Lin, Hai oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 27(2017), 16, Seite 2798-2812 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:27 year:2017 number:16 pages:2798-2812 http://dx.doi.org/10.1002/rnc.3711 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3711/abstract https://search.proquest.com/docview/1951011473 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 27 2017 16 2798-2812 |
allfieldsGer |
10.1002/rnc.3711 doi PQ20171228 (DE-627)OLC1998171523 (DE-599)GBVOLC1998171523 (PRQ)p951-6840c94d3a90b6ec86946ea475ed2aa45bc8d72e4ba7e6d35046c11b25445c5d3 (KEY)0202774720170000027001602798onl1stabilityofswitchedpositivesingularsystemswith DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Li, Shuo verfasserin aut On l1 stability of switched positive singular systems with time‐varying delay 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. exponential stability gain performance time‐varying delay average dwell time switched positive singular systems co‐positive linear Lyapunov function Convexity Switching System effectiveness Dwell time Singular value decomposition Stability analysis Discrete time systems Delay Linear programming Decay rate Lin, Hai oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 27(2017), 16, Seite 2798-2812 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:27 year:2017 number:16 pages:2798-2812 http://dx.doi.org/10.1002/rnc.3711 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3711/abstract https://search.proquest.com/docview/1951011473 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 27 2017 16 2798-2812 |
allfieldsSound |
10.1002/rnc.3711 doi PQ20171228 (DE-627)OLC1998171523 (DE-599)GBVOLC1998171523 (PRQ)p951-6840c94d3a90b6ec86946ea475ed2aa45bc8d72e4ba7e6d35046c11b25445c5d3 (KEY)0202774720170000027001602798onl1stabilityofswitchedpositivesingularsystemswith DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Li, Shuo verfasserin aut On l1 stability of switched positive singular systems with time‐varying delay 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. exponential stability gain performance time‐varying delay average dwell time switched positive singular systems co‐positive linear Lyapunov function Convexity Switching System effectiveness Dwell time Singular value decomposition Stability analysis Discrete time systems Delay Linear programming Decay rate Lin, Hai oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 27(2017), 16, Seite 2798-2812 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:27 year:2017 number:16 pages:2798-2812 http://dx.doi.org/10.1002/rnc.3711 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3711/abstract https://search.proquest.com/docview/1951011473 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 27 2017 16 2798-2812 |
language |
English |
source |
Enthalten in International journal of robust and nonlinear control 27(2017), 16, Seite 2798-2812 volume:27 year:2017 number:16 pages:2798-2812 |
sourceStr |
Enthalten in International journal of robust and nonlinear control 27(2017), 16, Seite 2798-2812 volume:27 year:2017 number:16 pages:2798-2812 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
exponential stability gain performance time‐varying delay average dwell time switched positive singular systems co‐positive linear Lyapunov function Convexity Switching System effectiveness Dwell time Singular value decomposition Stability analysis Discrete time systems Delay Linear programming Decay rate |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International journal of robust and nonlinear control |
authorswithroles_txt_mv |
Li, Shuo @@aut@@ Lin, Hai @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
13098311X |
dewey-sort |
3510 |
id |
OLC1998171523 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998171523</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216165659.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/rnc.3711</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998171523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998171523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p951-6840c94d3a90b6ec86946ea475ed2aa45bc8d72e4ba7e6d35046c11b25445c5d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0202774720170000027001602798onl1stabilityofswitchedpositivesingularsystemswith</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On l1 stability of switched positive singular systems with time‐varying delay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponential stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gain performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time‐varying delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">average dwell time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switched positive singular systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co‐positive linear Lyapunov function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System effectiveness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dwell time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular value decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete time systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decay rate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Hai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of robust and nonlinear control</subfield><subfield code="d">Chichester : Wiley, 1991</subfield><subfield code="g">27(2017), 16, Seite 2798-2812</subfield><subfield code="w">(DE-627)13098311X</subfield><subfield code="w">(DE-600)1076540-2</subfield><subfield code="w">(DE-576)027065731</subfield><subfield code="x">1049-8923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:2798-2812</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/rnc.3711</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/rnc.3711/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1951011473</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2017</subfield><subfield code="e">16</subfield><subfield code="h">2798-2812</subfield></datafield></record></collection>
|
author |
Li, Shuo |
spellingShingle |
Li, Shuo ddc 510 bkl 53.00 misc exponential stability misc gain performance misc time‐varying delay misc average dwell time misc switched positive singular systems misc co‐positive linear Lyapunov function misc Convexity misc Switching misc System effectiveness misc Dwell time misc Singular value decomposition misc Stability analysis misc Discrete time systems misc Delay misc Linear programming misc Decay rate On l1 stability of switched positive singular systems with time‐varying delay |
authorStr |
Li, Shuo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13098311X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1049-8923 |
topic_title |
510 ZDB 53.00 bkl On l1 stability of switched positive singular systems with time‐varying delay exponential stability gain performance time‐varying delay average dwell time switched positive singular systems co‐positive linear Lyapunov function Convexity Switching System effectiveness Dwell time Singular value decomposition Stability analysis Discrete time systems Delay Linear programming Decay rate |
topic |
ddc 510 bkl 53.00 misc exponential stability misc gain performance misc time‐varying delay misc average dwell time misc switched positive singular systems misc co‐positive linear Lyapunov function misc Convexity misc Switching misc System effectiveness misc Dwell time misc Singular value decomposition misc Stability analysis misc Discrete time systems misc Delay misc Linear programming misc Decay rate |
topic_unstemmed |
ddc 510 bkl 53.00 misc exponential stability misc gain performance misc time‐varying delay misc average dwell time misc switched positive singular systems misc co‐positive linear Lyapunov function misc Convexity misc Switching misc System effectiveness misc Dwell time misc Singular value decomposition misc Stability analysis misc Discrete time systems misc Delay misc Linear programming misc Decay rate |
topic_browse |
ddc 510 bkl 53.00 misc exponential stability misc gain performance misc time‐varying delay misc average dwell time misc switched positive singular systems misc co‐positive linear Lyapunov function misc Convexity misc Switching misc System effectiveness misc Dwell time misc Singular value decomposition misc Stability analysis misc Discrete time systems misc Delay misc Linear programming misc Decay rate |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h l hl |
hierarchy_parent_title |
International journal of robust and nonlinear control |
hierarchy_parent_id |
13098311X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International journal of robust and nonlinear control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 |
title |
On l1 stability of switched positive singular systems with time‐varying delay |
ctrlnum |
(DE-627)OLC1998171523 (DE-599)GBVOLC1998171523 (PRQ)p951-6840c94d3a90b6ec86946ea475ed2aa45bc8d72e4ba7e6d35046c11b25445c5d3 (KEY)0202774720170000027001602798onl1stabilityofswitchedpositivesingularsystemswith |
title_full |
On l1 stability of switched positive singular systems with time‐varying delay |
author_sort |
Li, Shuo |
journal |
International journal of robust and nonlinear control |
journalStr |
International journal of robust and nonlinear control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2798 |
author_browse |
Li, Shuo |
container_volume |
27 |
class |
510 ZDB 53.00 bkl |
format_se |
Aufsätze |
author-letter |
Li, Shuo |
doi_str_mv |
10.1002/rnc.3711 |
dewey-full |
510 |
title_sort |
on l1 stability of switched positive singular systems with time‐varying delay |
title_auth |
On l1 stability of switched positive singular systems with time‐varying delay |
abstract |
This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. |
abstractGer |
This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. |
abstract_unstemmed |
This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
16 |
title_short |
On l1 stability of switched positive singular systems with time‐varying delay |
url |
http://dx.doi.org/10.1002/rnc.3711 http://onlinelibrary.wiley.com/doi/10.1002/rnc.3711/abstract https://search.proquest.com/docview/1951011473 |
remote_bool |
false |
author2 |
Lin, Hai |
author2Str |
Lin, Hai |
ppnlink |
13098311X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1002/rnc.3711 |
up_date |
2024-07-04T04:26:48.782Z |
_version_ |
1803621193517891584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998171523</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216165659.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/rnc.3711</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998171523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998171523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p951-6840c94d3a90b6ec86946ea475ed2aa45bc8d72e4ba7e6d35046c11b25445c5d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0202774720170000027001602798onl1stabilityofswitchedpositivesingularsystemswith</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On l1 stability of switched positive singular systems with time‐varying delay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of exponential stability and l 1 ‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l 1 ‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponential stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gain performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time‐varying delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">average dwell time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switched positive singular systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co‐positive linear Lyapunov function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System effectiveness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dwell time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular value decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete time systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decay rate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Hai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of robust and nonlinear control</subfield><subfield code="d">Chichester : Wiley, 1991</subfield><subfield code="g">27(2017), 16, Seite 2798-2812</subfield><subfield code="w">(DE-627)13098311X</subfield><subfield code="w">(DE-600)1076540-2</subfield><subfield code="w">(DE-576)027065731</subfield><subfield code="x">1049-8923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:2798-2812</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/rnc.3711</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/rnc.3711/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1951011473</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2017</subfield><subfield code="e">16</subfield><subfield code="h">2798-2812</subfield></datafield></record></collection>
|
score |
7.401292 |