Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks
The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distrib...
Ausführliche Beschreibung
Autor*in: |
You, Jie [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on control systems technology - New York, NY : IEEE, 1993, 25(2017), 6, Seite 2151-2159 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2017 ; number:6 ; pages:2151-2159 |
Links: |
---|
DOI / URN: |
10.1109/TCST.2016.2638678 |
---|
Katalog-ID: |
OLC1998272370 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1998272370 | ||
003 | DE-627 | ||
005 | 20230715081440.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TCST.2016.2638678 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1998272370 | ||
035 | |a (DE-599)GBVOLC1998272370 | ||
035 | |a (PRQ)c1310-529193f4c7fe4fa4637cb2161167309a45c1f44c774e1479401f583af1f510580 | ||
035 | |a (KEY)0226256820170000025000602151onlinepassiveidentifierforspatiallydistributedsyst | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DNB |
100 | 1 | |a You, Jie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier. | ||
650 | 4 | |a parameter identification | |
650 | 4 | |a Sensors | |
650 | 4 | |a Distributed parameter systems (DPSs) | |
650 | 4 | |a Distributed parameter systems | |
650 | 4 | |a Parameter estimation | |
650 | 4 | |a Kalman filters | |
650 | 4 | |a Mobile communication | |
650 | 4 | |a mobile sensor networks | |
650 | 4 | |a Trajectory | |
700 | 1 | |a Wu, Wencen |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on control systems technology |d New York, NY : IEEE, 1993 |g 25(2017), 6, Seite 2151-2159 |w (DE-627)171098137 |w (DE-600)1151354-8 |w (DE-576)03420315X |x 1063-6536 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2017 |g number:6 |g pages:2151-2159 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TCST.2016.2638678 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7812666 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2016 | ||
951 | |a AR | ||
952 | |d 25 |j 2017 |e 6 |h 2151-2159 |
author_variant |
j y jy |
---|---|
matchkey_str |
article:10636536:2017----::nieasvietfefrptaldsrbtdytmui |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TCST.2016.2638678 doi PQ20171228 (DE-627)OLC1998272370 (DE-599)GBVOLC1998272370 (PRQ)c1310-529193f4c7fe4fa4637cb2161167309a45c1f44c774e1479401f583af1f510580 (KEY)0226256820170000025000602151onlinepassiveidentifierforspatiallydistributedsyst DE-627 ger DE-627 rakwb eng 004 DNB You, Jie verfasserin aut Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier. parameter identification Sensors Distributed parameter systems (DPSs) Distributed parameter systems Parameter estimation Kalman filters Mobile communication mobile sensor networks Trajectory Wu, Wencen oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 25(2017), 6, Seite 2151-2159 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:25 year:2017 number:6 pages:2151-2159 http://dx.doi.org/10.1109/TCST.2016.2638678 Volltext http://ieeexplore.ieee.org/document/7812666 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2016 AR 25 2017 6 2151-2159 |
spelling |
10.1109/TCST.2016.2638678 doi PQ20171228 (DE-627)OLC1998272370 (DE-599)GBVOLC1998272370 (PRQ)c1310-529193f4c7fe4fa4637cb2161167309a45c1f44c774e1479401f583af1f510580 (KEY)0226256820170000025000602151onlinepassiveidentifierforspatiallydistributedsyst DE-627 ger DE-627 rakwb eng 004 DNB You, Jie verfasserin aut Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier. parameter identification Sensors Distributed parameter systems (DPSs) Distributed parameter systems Parameter estimation Kalman filters Mobile communication mobile sensor networks Trajectory Wu, Wencen oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 25(2017), 6, Seite 2151-2159 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:25 year:2017 number:6 pages:2151-2159 http://dx.doi.org/10.1109/TCST.2016.2638678 Volltext http://ieeexplore.ieee.org/document/7812666 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2016 AR 25 2017 6 2151-2159 |
allfields_unstemmed |
10.1109/TCST.2016.2638678 doi PQ20171228 (DE-627)OLC1998272370 (DE-599)GBVOLC1998272370 (PRQ)c1310-529193f4c7fe4fa4637cb2161167309a45c1f44c774e1479401f583af1f510580 (KEY)0226256820170000025000602151onlinepassiveidentifierforspatiallydistributedsyst DE-627 ger DE-627 rakwb eng 004 DNB You, Jie verfasserin aut Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier. parameter identification Sensors Distributed parameter systems (DPSs) Distributed parameter systems Parameter estimation Kalman filters Mobile communication mobile sensor networks Trajectory Wu, Wencen oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 25(2017), 6, Seite 2151-2159 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:25 year:2017 number:6 pages:2151-2159 http://dx.doi.org/10.1109/TCST.2016.2638678 Volltext http://ieeexplore.ieee.org/document/7812666 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2016 AR 25 2017 6 2151-2159 |
allfieldsGer |
10.1109/TCST.2016.2638678 doi PQ20171228 (DE-627)OLC1998272370 (DE-599)GBVOLC1998272370 (PRQ)c1310-529193f4c7fe4fa4637cb2161167309a45c1f44c774e1479401f583af1f510580 (KEY)0226256820170000025000602151onlinepassiveidentifierforspatiallydistributedsyst DE-627 ger DE-627 rakwb eng 004 DNB You, Jie verfasserin aut Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier. parameter identification Sensors Distributed parameter systems (DPSs) Distributed parameter systems Parameter estimation Kalman filters Mobile communication mobile sensor networks Trajectory Wu, Wencen oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 25(2017), 6, Seite 2151-2159 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:25 year:2017 number:6 pages:2151-2159 http://dx.doi.org/10.1109/TCST.2016.2638678 Volltext http://ieeexplore.ieee.org/document/7812666 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2016 AR 25 2017 6 2151-2159 |
allfieldsSound |
10.1109/TCST.2016.2638678 doi PQ20171228 (DE-627)OLC1998272370 (DE-599)GBVOLC1998272370 (PRQ)c1310-529193f4c7fe4fa4637cb2161167309a45c1f44c774e1479401f583af1f510580 (KEY)0226256820170000025000602151onlinepassiveidentifierforspatiallydistributedsyst DE-627 ger DE-627 rakwb eng 004 DNB You, Jie verfasserin aut Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier. parameter identification Sensors Distributed parameter systems (DPSs) Distributed parameter systems Parameter estimation Kalman filters Mobile communication mobile sensor networks Trajectory Wu, Wencen oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 25(2017), 6, Seite 2151-2159 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:25 year:2017 number:6 pages:2151-2159 http://dx.doi.org/10.1109/TCST.2016.2638678 Volltext http://ieeexplore.ieee.org/document/7812666 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2016 AR 25 2017 6 2151-2159 |
language |
English |
source |
Enthalten in IEEE transactions on control systems technology 25(2017), 6, Seite 2151-2159 volume:25 year:2017 number:6 pages:2151-2159 |
sourceStr |
Enthalten in IEEE transactions on control systems technology 25(2017), 6, Seite 2151-2159 volume:25 year:2017 number:6 pages:2151-2159 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
parameter identification Sensors Distributed parameter systems (DPSs) Distributed parameter systems Parameter estimation Kalman filters Mobile communication mobile sensor networks Trajectory |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on control systems technology |
authorswithroles_txt_mv |
You, Jie @@aut@@ Wu, Wencen @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
171098137 |
dewey-sort |
14 |
id |
OLC1998272370 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998272370</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715081440.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCST.2016.2638678</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998272370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998272370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1310-529193f4c7fe4fa4637cb2161167309a45c1f44c774e1479401f583af1f510580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226256820170000025000602151onlinepassiveidentifierforspatiallydistributedsyst</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">You, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed parameter systems (DPSs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed parameter systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kalman filters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile sensor networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trajectory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wencen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on control systems technology</subfield><subfield code="d">New York, NY : IEEE, 1993</subfield><subfield code="g">25(2017), 6, Seite 2151-2159</subfield><subfield code="w">(DE-627)171098137</subfield><subfield code="w">(DE-600)1151354-8</subfield><subfield code="w">(DE-576)03420315X</subfield><subfield code="x">1063-6536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2151-2159</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCST.2016.2638678</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7812666</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">2151-2159</subfield></datafield></record></collection>
|
author |
You, Jie |
spellingShingle |
You, Jie ddc 004 misc parameter identification misc Sensors misc Distributed parameter systems (DPSs) misc Distributed parameter systems misc Parameter estimation misc Kalman filters misc Mobile communication misc mobile sensor networks misc Trajectory Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks |
authorStr |
You, Jie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171098137 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-6536 |
topic_title |
004 DNB Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks parameter identification Sensors Distributed parameter systems (DPSs) Distributed parameter systems Parameter estimation Kalman filters Mobile communication mobile sensor networks Trajectory |
topic |
ddc 004 misc parameter identification misc Sensors misc Distributed parameter systems (DPSs) misc Distributed parameter systems misc Parameter estimation misc Kalman filters misc Mobile communication misc mobile sensor networks misc Trajectory |
topic_unstemmed |
ddc 004 misc parameter identification misc Sensors misc Distributed parameter systems (DPSs) misc Distributed parameter systems misc Parameter estimation misc Kalman filters misc Mobile communication misc mobile sensor networks misc Trajectory |
topic_browse |
ddc 004 misc parameter identification misc Sensors misc Distributed parameter systems (DPSs) misc Distributed parameter systems misc Parameter estimation misc Kalman filters misc Mobile communication misc mobile sensor networks misc Trajectory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
w w ww |
hierarchy_parent_title |
IEEE transactions on control systems technology |
hierarchy_parent_id |
171098137 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
IEEE transactions on control systems technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X |
title |
Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks |
ctrlnum |
(DE-627)OLC1998272370 (DE-599)GBVOLC1998272370 (PRQ)c1310-529193f4c7fe4fa4637cb2161167309a45c1f44c774e1479401f583af1f510580 (KEY)0226256820170000025000602151onlinepassiveidentifierforspatiallydistributedsyst |
title_full |
Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks |
author_sort |
You, Jie |
journal |
IEEE transactions on control systems technology |
journalStr |
IEEE transactions on control systems technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2151 |
author_browse |
You, Jie |
container_volume |
25 |
class |
004 DNB |
format_se |
Aufsätze |
author-letter |
You, Jie |
doi_str_mv |
10.1109/TCST.2016.2638678 |
dewey-full |
004 |
title_sort |
online passive identifier for spatially distributed systems using mobile sensor networks |
title_auth |
Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks |
abstract |
The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier. |
abstractGer |
The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier. |
abstract_unstemmed |
The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2016 |
container_issue |
6 |
title_short |
Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks |
url |
http://dx.doi.org/10.1109/TCST.2016.2638678 http://ieeexplore.ieee.org/document/7812666 |
remote_bool |
false |
author2 |
Wu, Wencen |
author2Str |
Wu, Wencen |
ppnlink |
171098137 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TCST.2016.2638678 |
up_date |
2024-07-04T04:40:29.015Z |
_version_ |
1803622053587189760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998272370</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715081440.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCST.2016.2638678</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998272370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998272370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1310-529193f4c7fe4fa4637cb2161167309a45c1f44c774e1479401f583af1f510580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226256820170000025000602151onlinepassiveidentifierforspatiallydistributedsyst</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">You, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problem of online parameter identification for spatially distributed systems using a mobile sensor network is investigated in this brief. Inspired by the passive identifier developed for boundary control of partial differential equations (PDEs) using a static sensor network, we propose a distributed online passive identifier that is able to estimate the unknown diffusion coefficient of the advection-diffusion PDE using data collected by a mobile sensor network moving in the field. To enable the online passive identifier, we develop a distributed cooperative Kalman filter run by each sensing agent that provides state estimates of the field. Optimal trajectory for the mobile sensor network in the advection-diffusion field is found, and distributed control laws to control the mobile sensor network to estimate and follow the trajectory while keeping a desired formation are designed. We prove that the parameter estimation errors are bounded and achieve parameter consensus. In addition, by generating a persistence of excitation condition, we further verify the asymptotic parameter convergence. Numerical simulations for 2-D and 3-D cases demonstrate the effectiveness of the proposed online passive identifier.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed parameter systems (DPSs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed parameter systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kalman filters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile sensor networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trajectory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wencen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on control systems technology</subfield><subfield code="d">New York, NY : IEEE, 1993</subfield><subfield code="g">25(2017), 6, Seite 2151-2159</subfield><subfield code="w">(DE-627)171098137</subfield><subfield code="w">(DE-600)1151354-8</subfield><subfield code="w">(DE-576)03420315X</subfield><subfield code="x">1063-6536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2151-2159</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCST.2016.2638678</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7812666</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">2151-2159</subfield></datafield></record></collection>
|
score |
7.401457 |