A Direct Construction of Nontransitive Dice Sets
In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient genera...
Ausführliche Beschreibung
Autor*in: |
Angel, Levi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Wiley Periodicals, Inc. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of combinatorial designs - New York, NY : Wiley, 1993, 25(2017), 11, Seite 523-529 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2017 ; number:11 ; pages:523-529 |
Links: |
---|
DOI / URN: |
10.1002/jcd.21563 |
---|
Katalog-ID: |
OLC1998285685 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1998285685 | ||
003 | DE-627 | ||
005 | 20230715081515.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/jcd.21563 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1998285685 | ||
035 | |a (DE-599)GBVOLC1998285685 | ||
035 | |a (PRQ)p1043-427938e5f554cfffdcc50f571ace1206a792acdab3643c6aa71edab902c9960b3 | ||
035 | |a (KEY)0227317920170000025001100523directconstructionofnontransitivedicesets | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
100 | 1 | |a Angel, Levi |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Direct Construction of Nontransitive Dice Sets |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory. | ||
540 | |a Nutzungsrecht: © 2017 Wiley Periodicals, Inc. | ||
650 | 4 | |a nontransitive dice | |
650 | 4 | |a Graph theory | |
650 | 4 | |a Construction standards | |
650 | 4 | |a Construction | |
700 | 1 | |a Davis, Matt |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of combinatorial designs |d New York, NY : Wiley, 1993 |g 25(2017), 11, Seite 523-529 |w (DE-627)171284372 |w (DE-600)1173570-3 |w (DE-576)03873298X |x 1063-8539 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2017 |g number:11 |g pages:523-529 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/jcd.21563 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/jcd.21563/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1937315349 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2244 | ||
951 | |a AR | ||
952 | |d 25 |j 2017 |e 11 |h 523-529 |
author_variant |
l a la |
---|---|
matchkey_str |
article:10638539:2017----::drccntutoonnrni |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/jcd.21563 doi PQ20171228 (DE-627)OLC1998285685 (DE-599)GBVOLC1998285685 (PRQ)p1043-427938e5f554cfffdcc50f571ace1206a792acdab3643c6aa71edab902c9960b3 (KEY)0227317920170000025001100523directconstructionofnontransitivedicesets DE-627 ger DE-627 rakwb eng 004 DE-600 Angel, Levi verfasserin aut A Direct Construction of Nontransitive Dice Sets 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. nontransitive dice Graph theory Construction standards Construction Davis, Matt oth Enthalten in Journal of combinatorial designs New York, NY : Wiley, 1993 25(2017), 11, Seite 523-529 (DE-627)171284372 (DE-600)1173570-3 (DE-576)03873298X 1063-8539 nnns volume:25 year:2017 number:11 pages:523-529 http://dx.doi.org/10.1002/jcd.21563 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcd.21563/abstract https://search.proquest.com/docview/1937315349 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2244 AR 25 2017 11 523-529 |
spelling |
10.1002/jcd.21563 doi PQ20171228 (DE-627)OLC1998285685 (DE-599)GBVOLC1998285685 (PRQ)p1043-427938e5f554cfffdcc50f571ace1206a792acdab3643c6aa71edab902c9960b3 (KEY)0227317920170000025001100523directconstructionofnontransitivedicesets DE-627 ger DE-627 rakwb eng 004 DE-600 Angel, Levi verfasserin aut A Direct Construction of Nontransitive Dice Sets 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. nontransitive dice Graph theory Construction standards Construction Davis, Matt oth Enthalten in Journal of combinatorial designs New York, NY : Wiley, 1993 25(2017), 11, Seite 523-529 (DE-627)171284372 (DE-600)1173570-3 (DE-576)03873298X 1063-8539 nnns volume:25 year:2017 number:11 pages:523-529 http://dx.doi.org/10.1002/jcd.21563 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcd.21563/abstract https://search.proquest.com/docview/1937315349 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2244 AR 25 2017 11 523-529 |
allfields_unstemmed |
10.1002/jcd.21563 doi PQ20171228 (DE-627)OLC1998285685 (DE-599)GBVOLC1998285685 (PRQ)p1043-427938e5f554cfffdcc50f571ace1206a792acdab3643c6aa71edab902c9960b3 (KEY)0227317920170000025001100523directconstructionofnontransitivedicesets DE-627 ger DE-627 rakwb eng 004 DE-600 Angel, Levi verfasserin aut A Direct Construction of Nontransitive Dice Sets 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. nontransitive dice Graph theory Construction standards Construction Davis, Matt oth Enthalten in Journal of combinatorial designs New York, NY : Wiley, 1993 25(2017), 11, Seite 523-529 (DE-627)171284372 (DE-600)1173570-3 (DE-576)03873298X 1063-8539 nnns volume:25 year:2017 number:11 pages:523-529 http://dx.doi.org/10.1002/jcd.21563 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcd.21563/abstract https://search.proquest.com/docview/1937315349 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2244 AR 25 2017 11 523-529 |
allfieldsGer |
10.1002/jcd.21563 doi PQ20171228 (DE-627)OLC1998285685 (DE-599)GBVOLC1998285685 (PRQ)p1043-427938e5f554cfffdcc50f571ace1206a792acdab3643c6aa71edab902c9960b3 (KEY)0227317920170000025001100523directconstructionofnontransitivedicesets DE-627 ger DE-627 rakwb eng 004 DE-600 Angel, Levi verfasserin aut A Direct Construction of Nontransitive Dice Sets 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. nontransitive dice Graph theory Construction standards Construction Davis, Matt oth Enthalten in Journal of combinatorial designs New York, NY : Wiley, 1993 25(2017), 11, Seite 523-529 (DE-627)171284372 (DE-600)1173570-3 (DE-576)03873298X 1063-8539 nnns volume:25 year:2017 number:11 pages:523-529 http://dx.doi.org/10.1002/jcd.21563 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcd.21563/abstract https://search.proquest.com/docview/1937315349 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2244 AR 25 2017 11 523-529 |
allfieldsSound |
10.1002/jcd.21563 doi PQ20171228 (DE-627)OLC1998285685 (DE-599)GBVOLC1998285685 (PRQ)p1043-427938e5f554cfffdcc50f571ace1206a792acdab3643c6aa71edab902c9960b3 (KEY)0227317920170000025001100523directconstructionofnontransitivedicesets DE-627 ger DE-627 rakwb eng 004 DE-600 Angel, Levi verfasserin aut A Direct Construction of Nontransitive Dice Sets 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. nontransitive dice Graph theory Construction standards Construction Davis, Matt oth Enthalten in Journal of combinatorial designs New York, NY : Wiley, 1993 25(2017), 11, Seite 523-529 (DE-627)171284372 (DE-600)1173570-3 (DE-576)03873298X 1063-8539 nnns volume:25 year:2017 number:11 pages:523-529 http://dx.doi.org/10.1002/jcd.21563 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcd.21563/abstract https://search.proquest.com/docview/1937315349 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2244 AR 25 2017 11 523-529 |
language |
English |
source |
Enthalten in Journal of combinatorial designs 25(2017), 11, Seite 523-529 volume:25 year:2017 number:11 pages:523-529 |
sourceStr |
Enthalten in Journal of combinatorial designs 25(2017), 11, Seite 523-529 volume:25 year:2017 number:11 pages:523-529 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nontransitive dice Graph theory Construction standards Construction |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of combinatorial designs |
authorswithroles_txt_mv |
Angel, Levi @@aut@@ Davis, Matt @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
171284372 |
dewey-sort |
14 |
id |
OLC1998285685 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998285685</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715081515.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/jcd.21563</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998285685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998285685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1043-427938e5f554cfffdcc50f571ace1206a792acdab3643c6aa71edab902c9960b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0227317920170000025001100523directconstructionofnontransitivedicesets</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angel, Levi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Direct Construction of Nontransitive Dice Sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Wiley Periodicals, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nontransitive dice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Construction standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Construction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davis, Matt</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial designs</subfield><subfield code="d">New York, NY : Wiley, 1993</subfield><subfield code="g">25(2017), 11, Seite 523-529</subfield><subfield code="w">(DE-627)171284372</subfield><subfield code="w">(DE-600)1173570-3</subfield><subfield code="w">(DE-576)03873298X</subfield><subfield code="x">1063-8539</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:523-529</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/jcd.21563</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/jcd.21563/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1937315349</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2017</subfield><subfield code="e">11</subfield><subfield code="h">523-529</subfield></datafield></record></collection>
|
author |
Angel, Levi |
spellingShingle |
Angel, Levi ddc 004 misc nontransitive dice misc Graph theory misc Construction standards misc Construction A Direct Construction of Nontransitive Dice Sets |
authorStr |
Angel, Levi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171284372 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-8539 |
topic_title |
004 DE-600 A Direct Construction of Nontransitive Dice Sets nontransitive dice Graph theory Construction standards Construction |
topic |
ddc 004 misc nontransitive dice misc Graph theory misc Construction standards misc Construction |
topic_unstemmed |
ddc 004 misc nontransitive dice misc Graph theory misc Construction standards misc Construction |
topic_browse |
ddc 004 misc nontransitive dice misc Graph theory misc Construction standards misc Construction |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m d md |
hierarchy_parent_title |
Journal of combinatorial designs |
hierarchy_parent_id |
171284372 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of combinatorial designs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171284372 (DE-600)1173570-3 (DE-576)03873298X |
title |
A Direct Construction of Nontransitive Dice Sets |
ctrlnum |
(DE-627)OLC1998285685 (DE-599)GBVOLC1998285685 (PRQ)p1043-427938e5f554cfffdcc50f571ace1206a792acdab3643c6aa71edab902c9960b3 (KEY)0227317920170000025001100523directconstructionofnontransitivedicesets |
title_full |
A Direct Construction of Nontransitive Dice Sets |
author_sort |
Angel, Levi |
journal |
Journal of combinatorial designs |
journalStr |
Journal of combinatorial designs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
523 |
author_browse |
Angel, Levi |
container_volume |
25 |
class |
004 DE-600 |
format_se |
Aufsätze |
author-letter |
Angel, Levi |
doi_str_mv |
10.1002/jcd.21563 |
dewey-full |
004 |
title_sort |
direct construction of nontransitive dice sets |
title_auth |
A Direct Construction of Nontransitive Dice Sets |
abstract |
In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory. |
abstractGer |
In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory. |
abstract_unstemmed |
In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2244 |
container_issue |
11 |
title_short |
A Direct Construction of Nontransitive Dice Sets |
url |
http://dx.doi.org/10.1002/jcd.21563 http://onlinelibrary.wiley.com/doi/10.1002/jcd.21563/abstract https://search.proquest.com/docview/1937315349 |
remote_bool |
false |
author2 |
Davis, Matt |
author2Str |
Davis, Matt |
ppnlink |
171284372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1002/jcd.21563 |
up_date |
2024-07-04T04:42:08.198Z |
_version_ |
1803622157595443200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998285685</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715081515.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/jcd.21563</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998285685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998285685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1043-427938e5f554cfffdcc50f571ace1206a792acdab3643c6aa71edab902c9960b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0227317920170000025001100523directconstructionofnontransitivedicesets</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angel, Levi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Direct Construction of Nontransitive Dice Sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we give a direct construction for a set of dice realizing any given tournament T . The construction for a tournament with n vertices requires dice with n sides if n is odd, n + 1 sides if n is divisible by 4, and n − 1 sides if n ≡ 2 mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Wiley Periodicals, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nontransitive dice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Construction standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Construction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davis, Matt</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial designs</subfield><subfield code="d">New York, NY : Wiley, 1993</subfield><subfield code="g">25(2017), 11, Seite 523-529</subfield><subfield code="w">(DE-627)171284372</subfield><subfield code="w">(DE-600)1173570-3</subfield><subfield code="w">(DE-576)03873298X</subfield><subfield code="x">1063-8539</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:523-529</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/jcd.21563</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/jcd.21563/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1937315349</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2017</subfield><subfield code="e">11</subfield><subfield code="h">523-529</subfield></datafield></record></collection>
|
score |
7.4007883 |