Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path
Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system...
Ausführliche Beschreibung
Autor*in: |
Márcio Holsbach Costa [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers in biology and medicine - New York, NY [u.a.] : Pergamon Press, 1970, 91(2017), Seite 243 |
---|---|
Übergeordnetes Werk: |
volume:91 ; year:2017 ; pages:243 |
Links: |
---|
DOI / URN: |
10.1016/j.compbiomed.2017.10.018 |
---|
Katalog-ID: |
OLC1998656942 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1998656942 | ||
003 | DE-627 | ||
005 | 20230510172444.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compbiomed.2017.10.018 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1998656942 | ||
035 | |a (DE-599)GBVOLC1998656942 | ||
035 | |a (PRQ)p577-b217c2961e9d39d9eda9843967337f92c131d4ffc3352299cbf6a8b3317c54de0 | ||
035 | |a (KEY)0003445220170000091000000243theoreticaltransientanalysisofahearingaidfeedbackc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q DE-600 |
084 | |a 44.00 |2 bkl | ||
084 | |a 42.00 |2 bkl | ||
100 | 0 | |a Márcio Holsbach Costa |e verfasserin |4 aut | |
245 | 1 | 0 | |a Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. | ||
650 | 4 | |a Mathematical models | |
650 | 4 | |a Signal processing | |
650 | 4 | |a Acoustics | |
650 | 4 | |a Time series | |
650 | 4 | |a Statistical analysis | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Hearing loss | |
650 | 4 | |a Saturation | |
650 | 4 | |a Power amplifiers | |
650 | 4 | |a Mathematical problems | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Transient analysis | |
650 | 4 | |a Amplifiers | |
650 | 4 | |a Noise control | |
650 | 4 | |a Nonlinear systems | |
650 | 4 | |a Cancellers | |
650 | 4 | |a Adaptation | |
650 | 4 | |a Feedback | |
650 | 4 | |a Nonlinearity | |
650 | 4 | |a Hearing | |
650 | 4 | |a Hearing aids | |
650 | 4 | |a Transient performance | |
650 | 4 | |a Speech | |
650 | 4 | |a Loudspeakers | |
773 | 0 | 8 | |i Enthalten in |t Computers in biology and medicine |d New York, NY [u.a.] : Pergamon Press, 1970 |g 91(2017), Seite 243 |w (DE-627)129312789 |w (DE-600)127557-4 |w (DE-576)014525828 |x 0010-4825 |7 nnns |
773 | 1 | 8 | |g volume:91 |g year:2017 |g pages:243 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.compbiomed.2017.10.018 |3 Volltext |
856 | 4 | 2 | |u https://search.proquest.com/docview/1965438467 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 44.00 |q AVZ |
936 | b | k | |a 42.00 |q AVZ |
951 | |a AR | ||
952 | |d 91 |j 2017 |h 243 |
author_variant |
m h c mhc |
---|---|
matchkey_str |
article:00104825:2017----::hoeiatasetnlssfhaigifebccnelrihstrtotpn |
hierarchy_sort_str |
2017 |
bklnumber |
44.00 42.00 |
publishDate |
2017 |
allfields |
10.1016/j.compbiomed.2017.10.018 doi PQ20171228 (DE-627)OLC1998656942 (DE-599)GBVOLC1998656942 (PRQ)p577-b217c2961e9d39d9eda9843967337f92c131d4ffc3352299cbf6a8b3317c54de0 (KEY)0003445220170000091000000243theoreticaltransientanalysisofahearingaidfeedbackc DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Márcio Holsbach Costa verfasserin aut Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. Mathematical models Signal processing Acoustics Time series Statistical analysis Algorithms Hearing loss Saturation Power amplifiers Mathematical problems Computer simulation Transient analysis Amplifiers Noise control Nonlinear systems Cancellers Adaptation Feedback Nonlinearity Hearing Hearing aids Transient performance Speech Loudspeakers Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 91(2017), Seite 243 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:91 year:2017 pages:243 http://dx.doi.org/10.1016/j.compbiomed.2017.10.018 Volltext https://search.proquest.com/docview/1965438467 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 91 2017 243 |
spelling |
10.1016/j.compbiomed.2017.10.018 doi PQ20171228 (DE-627)OLC1998656942 (DE-599)GBVOLC1998656942 (PRQ)p577-b217c2961e9d39d9eda9843967337f92c131d4ffc3352299cbf6a8b3317c54de0 (KEY)0003445220170000091000000243theoreticaltransientanalysisofahearingaidfeedbackc DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Márcio Holsbach Costa verfasserin aut Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. Mathematical models Signal processing Acoustics Time series Statistical analysis Algorithms Hearing loss Saturation Power amplifiers Mathematical problems Computer simulation Transient analysis Amplifiers Noise control Nonlinear systems Cancellers Adaptation Feedback Nonlinearity Hearing Hearing aids Transient performance Speech Loudspeakers Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 91(2017), Seite 243 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:91 year:2017 pages:243 http://dx.doi.org/10.1016/j.compbiomed.2017.10.018 Volltext https://search.proquest.com/docview/1965438467 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 91 2017 243 |
allfields_unstemmed |
10.1016/j.compbiomed.2017.10.018 doi PQ20171228 (DE-627)OLC1998656942 (DE-599)GBVOLC1998656942 (PRQ)p577-b217c2961e9d39d9eda9843967337f92c131d4ffc3352299cbf6a8b3317c54de0 (KEY)0003445220170000091000000243theoreticaltransientanalysisofahearingaidfeedbackc DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Márcio Holsbach Costa verfasserin aut Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. Mathematical models Signal processing Acoustics Time series Statistical analysis Algorithms Hearing loss Saturation Power amplifiers Mathematical problems Computer simulation Transient analysis Amplifiers Noise control Nonlinear systems Cancellers Adaptation Feedback Nonlinearity Hearing Hearing aids Transient performance Speech Loudspeakers Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 91(2017), Seite 243 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:91 year:2017 pages:243 http://dx.doi.org/10.1016/j.compbiomed.2017.10.018 Volltext https://search.proquest.com/docview/1965438467 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 91 2017 243 |
allfieldsGer |
10.1016/j.compbiomed.2017.10.018 doi PQ20171228 (DE-627)OLC1998656942 (DE-599)GBVOLC1998656942 (PRQ)p577-b217c2961e9d39d9eda9843967337f92c131d4ffc3352299cbf6a8b3317c54de0 (KEY)0003445220170000091000000243theoreticaltransientanalysisofahearingaidfeedbackc DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Márcio Holsbach Costa verfasserin aut Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. Mathematical models Signal processing Acoustics Time series Statistical analysis Algorithms Hearing loss Saturation Power amplifiers Mathematical problems Computer simulation Transient analysis Amplifiers Noise control Nonlinear systems Cancellers Adaptation Feedback Nonlinearity Hearing Hearing aids Transient performance Speech Loudspeakers Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 91(2017), Seite 243 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:91 year:2017 pages:243 http://dx.doi.org/10.1016/j.compbiomed.2017.10.018 Volltext https://search.proquest.com/docview/1965438467 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 91 2017 243 |
allfieldsSound |
10.1016/j.compbiomed.2017.10.018 doi PQ20171228 (DE-627)OLC1998656942 (DE-599)GBVOLC1998656942 (PRQ)p577-b217c2961e9d39d9eda9843967337f92c131d4ffc3352299cbf6a8b3317c54de0 (KEY)0003445220170000091000000243theoreticaltransientanalysisofahearingaidfeedbackc DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Márcio Holsbach Costa verfasserin aut Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. Mathematical models Signal processing Acoustics Time series Statistical analysis Algorithms Hearing loss Saturation Power amplifiers Mathematical problems Computer simulation Transient analysis Amplifiers Noise control Nonlinear systems Cancellers Adaptation Feedback Nonlinearity Hearing Hearing aids Transient performance Speech Loudspeakers Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 91(2017), Seite 243 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:91 year:2017 pages:243 http://dx.doi.org/10.1016/j.compbiomed.2017.10.018 Volltext https://search.proquest.com/docview/1965438467 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 91 2017 243 |
language |
English |
source |
Enthalten in Computers in biology and medicine 91(2017), Seite 243 volume:91 year:2017 pages:243 |
sourceStr |
Enthalten in Computers in biology and medicine 91(2017), Seite 243 volume:91 year:2017 pages:243 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mathematical models Signal processing Acoustics Time series Statistical analysis Algorithms Hearing loss Saturation Power amplifiers Mathematical problems Computer simulation Transient analysis Amplifiers Noise control Nonlinear systems Cancellers Adaptation Feedback Nonlinearity Hearing Hearing aids Transient performance Speech Loudspeakers |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Computers in biology and medicine |
authorswithroles_txt_mv |
Márcio Holsbach Costa @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129312789 |
dewey-sort |
3610 |
id |
OLC1998656942 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998656942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510172444.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2017.10.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998656942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998656942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p577-b217c2961e9d39d9eda9843967337f92c131d4ffc3352299cbf6a8b3317c54de0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0003445220170000091000000243theoreticaltransientanalysisofahearingaidfeedbackc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Márcio Holsbach Costa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hearing loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saturation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power amplifiers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amplifiers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancellers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinearity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hearing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hearing aids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Speech</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loudspeakers</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">New York, NY [u.a.] : Pergamon Press, 1970</subfield><subfield code="g">91(2017), Seite 243</subfield><subfield code="w">(DE-627)129312789</subfield><subfield code="w">(DE-600)127557-4</subfield><subfield code="w">(DE-576)014525828</subfield><subfield code="x">0010-4825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:243</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.compbiomed.2017.10.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1965438467</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2017</subfield><subfield code="h">243</subfield></datafield></record></collection>
|
author |
Márcio Holsbach Costa |
spellingShingle |
Márcio Holsbach Costa ddc 610 bkl 44.00 bkl 42.00 misc Mathematical models misc Signal processing misc Acoustics misc Time series misc Statistical analysis misc Algorithms misc Hearing loss misc Saturation misc Power amplifiers misc Mathematical problems misc Computer simulation misc Transient analysis misc Amplifiers misc Noise control misc Nonlinear systems misc Cancellers misc Adaptation misc Feedback misc Nonlinearity misc Hearing misc Hearing aids misc Transient performance misc Speech misc Loudspeakers Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path |
authorStr |
Márcio Holsbach Costa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129312789 |
format |
Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-4825 |
topic_title |
610 570 DE-600 44.00 bkl 42.00 bkl Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path Mathematical models Signal processing Acoustics Time series Statistical analysis Algorithms Hearing loss Saturation Power amplifiers Mathematical problems Computer simulation Transient analysis Amplifiers Noise control Nonlinear systems Cancellers Adaptation Feedback Nonlinearity Hearing Hearing aids Transient performance Speech Loudspeakers |
topic |
ddc 610 bkl 44.00 bkl 42.00 misc Mathematical models misc Signal processing misc Acoustics misc Time series misc Statistical analysis misc Algorithms misc Hearing loss misc Saturation misc Power amplifiers misc Mathematical problems misc Computer simulation misc Transient analysis misc Amplifiers misc Noise control misc Nonlinear systems misc Cancellers misc Adaptation misc Feedback misc Nonlinearity misc Hearing misc Hearing aids misc Transient performance misc Speech misc Loudspeakers |
topic_unstemmed |
ddc 610 bkl 44.00 bkl 42.00 misc Mathematical models misc Signal processing misc Acoustics misc Time series misc Statistical analysis misc Algorithms misc Hearing loss misc Saturation misc Power amplifiers misc Mathematical problems misc Computer simulation misc Transient analysis misc Amplifiers misc Noise control misc Nonlinear systems misc Cancellers misc Adaptation misc Feedback misc Nonlinearity misc Hearing misc Hearing aids misc Transient performance misc Speech misc Loudspeakers |
topic_browse |
ddc 610 bkl 44.00 bkl 42.00 misc Mathematical models misc Signal processing misc Acoustics misc Time series misc Statistical analysis misc Algorithms misc Hearing loss misc Saturation misc Power amplifiers misc Mathematical problems misc Computer simulation misc Transient analysis misc Amplifiers misc Noise control misc Nonlinear systems misc Cancellers misc Adaptation misc Feedback misc Nonlinearity misc Hearing misc Hearing aids misc Transient performance misc Speech misc Loudspeakers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computers in biology and medicine |
hierarchy_parent_id |
129312789 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Computers in biology and medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 |
title |
Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path |
ctrlnum |
(DE-627)OLC1998656942 (DE-599)GBVOLC1998656942 (PRQ)p577-b217c2961e9d39d9eda9843967337f92c131d4ffc3352299cbf6a8b3317c54de0 (KEY)0003445220170000091000000243theoreticaltransientanalysisofahearingaidfeedbackc |
title_full |
Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path |
author_sort |
Márcio Holsbach Costa |
journal |
Computers in biology and medicine |
journalStr |
Computers in biology and medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
243 |
author_browse |
Márcio Holsbach Costa |
container_volume |
91 |
class |
610 570 DE-600 44.00 bkl 42.00 bkl |
format_se |
Aufsätze |
author-letter |
Márcio Holsbach Costa |
doi_str_mv |
10.1016/j.compbiomed.2017.10.018 |
dewey-full |
610 570 |
title_sort |
theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path |
title_auth |
Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path |
abstract |
Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. |
abstractGer |
Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. |
abstract_unstemmed |
Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
title_short |
Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path |
url |
http://dx.doi.org/10.1016/j.compbiomed.2017.10.018 https://search.proquest.com/docview/1965438467 |
remote_bool |
false |
ppnlink |
129312789 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compbiomed.2017.10.018 |
up_date |
2024-07-04T05:26:09.559Z |
_version_ |
1803624927250612224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998656942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510172444.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2017.10.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998656942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998656942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p577-b217c2961e9d39d9eda9843967337f92c131d4ffc3352299cbf6a8b3317c54de0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0003445220170000091000000243theoreticaltransientanalysisofahearingaidfeedbackc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Márcio Holsbach Costa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hearing loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saturation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power amplifiers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amplifiers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancellers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinearity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hearing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hearing aids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Speech</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loudspeakers</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">New York, NY [u.a.] : Pergamon Press, 1970</subfield><subfield code="g">91(2017), Seite 243</subfield><subfield code="w">(DE-627)129312789</subfield><subfield code="w">(DE-600)127557-4</subfield><subfield code="w">(DE-576)014525828</subfield><subfield code="x">0010-4825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:243</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.compbiomed.2017.10.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1965438467</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2017</subfield><subfield code="h">243</subfield></datafield></record></collection>
|
score |
7.4008236 |