On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty
A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperati...
Ausführliche Beschreibung
Autor*in: |
Badri, Vahid [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on automatic control - New York, NY : Inst., 1963, 62(2017), 12, Seite 6423-6429 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2017 ; number:12 ; pages:6423-6429 |
Links: |
---|
DOI / URN: |
10.1109/TAC.2017.2663839 |
---|
Katalog-ID: |
OLC1998665755 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1998665755 | ||
003 | DE-627 | ||
005 | 20210716225440.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TAC.2017.2663839 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1998665755 | ||
035 | |a (DE-599)GBVOLC1998665755 | ||
035 | |a (PRQ)c1069-90d8a0b08132e5192ec024e005b716e30c4c26043a7e4e9d2d9f22fa94e5c9490 | ||
035 | |a (KEY)0005057120170000062001206423onstabilityandtrajectoryboundednessoflotkavolterra | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Badri, Vahid |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples. | ||
650 | 4 | |a polytopic uncertainty | |
650 | 4 | |a Lyapunov stability | |
650 | 4 | |a cooperative system | |
650 | 4 | |a Upper bound | |
650 | 4 | |a Uncertainty | |
650 | 4 | |a Stability criteria | |
650 | 4 | |a Boundedness | |
650 | 4 | |a Numerical stability | |
650 | 4 | |a Lyapunov methods | |
650 | 4 | |a long-time behavior | |
650 | 4 | |a Trajectory | |
650 | 4 | |a Lotka–Volterra (LV) system | |
700 | 1 | |a Yazdanpanah, M. J |4 oth | |
700 | 1 | |a Tavazoei, Mohammad Saleh |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on automatic control |d New York, NY : Inst., 1963 |g 62(2017), 12, Seite 6423-6429 |w (DE-627)129601705 |w (DE-600)241443-0 |w (DE-576)015095320 |x 0018-9286 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2017 |g number:12 |g pages:6423-6429 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TAC.2017.2663839 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7840010 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_193 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4193 | ||
951 | |a AR | ||
952 | |d 62 |j 2017 |e 12 |h 6423-6429 |
author_variant |
v b vb |
---|---|
matchkey_str |
article:00189286:2017----::ntbltadrjcoyonensoltaotraytmwt |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TAC.2017.2663839 doi PQ20171228 (DE-627)OLC1998665755 (DE-599)GBVOLC1998665755 (PRQ)c1069-90d8a0b08132e5192ec024e005b716e30c4c26043a7e4e9d2d9f22fa94e5c9490 (KEY)0005057120170000062001206423onstabilityandtrajectoryboundednessoflotkavolterra DE-627 ger DE-627 rakwb eng 620 DNB Badri, Vahid verfasserin aut On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples. polytopic uncertainty Lyapunov stability cooperative system Upper bound Uncertainty Stability criteria Boundedness Numerical stability Lyapunov methods long-time behavior Trajectory Lotka–Volterra (LV) system Yazdanpanah, M. J oth Tavazoei, Mohammad Saleh oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6423-6429 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6423-6429 http://dx.doi.org/10.1109/TAC.2017.2663839 Volltext http://ieeexplore.ieee.org/document/7840010 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6423-6429 |
spelling |
10.1109/TAC.2017.2663839 doi PQ20171228 (DE-627)OLC1998665755 (DE-599)GBVOLC1998665755 (PRQ)c1069-90d8a0b08132e5192ec024e005b716e30c4c26043a7e4e9d2d9f22fa94e5c9490 (KEY)0005057120170000062001206423onstabilityandtrajectoryboundednessoflotkavolterra DE-627 ger DE-627 rakwb eng 620 DNB Badri, Vahid verfasserin aut On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples. polytopic uncertainty Lyapunov stability cooperative system Upper bound Uncertainty Stability criteria Boundedness Numerical stability Lyapunov methods long-time behavior Trajectory Lotka–Volterra (LV) system Yazdanpanah, M. J oth Tavazoei, Mohammad Saleh oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6423-6429 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6423-6429 http://dx.doi.org/10.1109/TAC.2017.2663839 Volltext http://ieeexplore.ieee.org/document/7840010 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6423-6429 |
allfields_unstemmed |
10.1109/TAC.2017.2663839 doi PQ20171228 (DE-627)OLC1998665755 (DE-599)GBVOLC1998665755 (PRQ)c1069-90d8a0b08132e5192ec024e005b716e30c4c26043a7e4e9d2d9f22fa94e5c9490 (KEY)0005057120170000062001206423onstabilityandtrajectoryboundednessoflotkavolterra DE-627 ger DE-627 rakwb eng 620 DNB Badri, Vahid verfasserin aut On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples. polytopic uncertainty Lyapunov stability cooperative system Upper bound Uncertainty Stability criteria Boundedness Numerical stability Lyapunov methods long-time behavior Trajectory Lotka–Volterra (LV) system Yazdanpanah, M. J oth Tavazoei, Mohammad Saleh oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6423-6429 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6423-6429 http://dx.doi.org/10.1109/TAC.2017.2663839 Volltext http://ieeexplore.ieee.org/document/7840010 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6423-6429 |
allfieldsGer |
10.1109/TAC.2017.2663839 doi PQ20171228 (DE-627)OLC1998665755 (DE-599)GBVOLC1998665755 (PRQ)c1069-90d8a0b08132e5192ec024e005b716e30c4c26043a7e4e9d2d9f22fa94e5c9490 (KEY)0005057120170000062001206423onstabilityandtrajectoryboundednessoflotkavolterra DE-627 ger DE-627 rakwb eng 620 DNB Badri, Vahid verfasserin aut On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples. polytopic uncertainty Lyapunov stability cooperative system Upper bound Uncertainty Stability criteria Boundedness Numerical stability Lyapunov methods long-time behavior Trajectory Lotka–Volterra (LV) system Yazdanpanah, M. J oth Tavazoei, Mohammad Saleh oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6423-6429 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6423-6429 http://dx.doi.org/10.1109/TAC.2017.2663839 Volltext http://ieeexplore.ieee.org/document/7840010 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6423-6429 |
allfieldsSound |
10.1109/TAC.2017.2663839 doi PQ20171228 (DE-627)OLC1998665755 (DE-599)GBVOLC1998665755 (PRQ)c1069-90d8a0b08132e5192ec024e005b716e30c4c26043a7e4e9d2d9f22fa94e5c9490 (KEY)0005057120170000062001206423onstabilityandtrajectoryboundednessoflotkavolterra DE-627 ger DE-627 rakwb eng 620 DNB Badri, Vahid verfasserin aut On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples. polytopic uncertainty Lyapunov stability cooperative system Upper bound Uncertainty Stability criteria Boundedness Numerical stability Lyapunov methods long-time behavior Trajectory Lotka–Volterra (LV) system Yazdanpanah, M. J oth Tavazoei, Mohammad Saleh oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6423-6429 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6423-6429 http://dx.doi.org/10.1109/TAC.2017.2663839 Volltext http://ieeexplore.ieee.org/document/7840010 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6423-6429 |
language |
English |
source |
Enthalten in IEEE transactions on automatic control 62(2017), 12, Seite 6423-6429 volume:62 year:2017 number:12 pages:6423-6429 |
sourceStr |
Enthalten in IEEE transactions on automatic control 62(2017), 12, Seite 6423-6429 volume:62 year:2017 number:12 pages:6423-6429 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
polytopic uncertainty Lyapunov stability cooperative system Upper bound Uncertainty Stability criteria Boundedness Numerical stability Lyapunov methods long-time behavior Trajectory Lotka–Volterra (LV) system |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on automatic control |
authorswithroles_txt_mv |
Badri, Vahid @@aut@@ Yazdanpanah, M. J @@oth@@ Tavazoei, Mohammad Saleh @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129601705 |
dewey-sort |
3620 |
id |
OLC1998665755 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998665755</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716225440.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAC.2017.2663839</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998665755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998665755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1069-90d8a0b08132e5192ec024e005b716e30c4c26043a7e4e9d2d9f22fa94e5c9490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0005057120170000062001206423onstabilityandtrajectoryboundednessoflotkavolterra</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Badri, Vahid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polytopic uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability criteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundedness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-time behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trajectory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lotka–Volterra (LV) system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yazdanpanah, M. J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tavazoei, Mohammad Saleh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on automatic control</subfield><subfield code="d">New York, NY : Inst., 1963</subfield><subfield code="g">62(2017), 12, Seite 6423-6429</subfield><subfield code="w">(DE-627)129601705</subfield><subfield code="w">(DE-600)241443-0</subfield><subfield code="w">(DE-576)015095320</subfield><subfield code="x">0018-9286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:6423-6429</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAC.2017.2663839</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7840010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2017</subfield><subfield code="e">12</subfield><subfield code="h">6423-6429</subfield></datafield></record></collection>
|
author |
Badri, Vahid |
spellingShingle |
Badri, Vahid ddc 620 misc polytopic uncertainty misc Lyapunov stability misc cooperative system misc Upper bound misc Uncertainty misc Stability criteria misc Boundedness misc Numerical stability misc Lyapunov methods misc long-time behavior misc Trajectory misc Lotka–Volterra (LV) system On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty |
authorStr |
Badri, Vahid |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601705 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9286 |
topic_title |
620 DNB On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty polytopic uncertainty Lyapunov stability cooperative system Upper bound Uncertainty Stability criteria Boundedness Numerical stability Lyapunov methods long-time behavior Trajectory Lotka–Volterra (LV) system |
topic |
ddc 620 misc polytopic uncertainty misc Lyapunov stability misc cooperative system misc Upper bound misc Uncertainty misc Stability criteria misc Boundedness misc Numerical stability misc Lyapunov methods misc long-time behavior misc Trajectory misc Lotka–Volterra (LV) system |
topic_unstemmed |
ddc 620 misc polytopic uncertainty misc Lyapunov stability misc cooperative system misc Upper bound misc Uncertainty misc Stability criteria misc Boundedness misc Numerical stability misc Lyapunov methods misc long-time behavior misc Trajectory misc Lotka–Volterra (LV) system |
topic_browse |
ddc 620 misc polytopic uncertainty misc Lyapunov stability misc cooperative system misc Upper bound misc Uncertainty misc Stability criteria misc Boundedness misc Numerical stability misc Lyapunov methods misc long-time behavior misc Trajectory misc Lotka–Volterra (LV) system |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m j y mj mjy m s t ms mst |
hierarchy_parent_title |
IEEE transactions on automatic control |
hierarchy_parent_id |
129601705 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on automatic control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 |
title |
On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty |
ctrlnum |
(DE-627)OLC1998665755 (DE-599)GBVOLC1998665755 (PRQ)c1069-90d8a0b08132e5192ec024e005b716e30c4c26043a7e4e9d2d9f22fa94e5c9490 (KEY)0005057120170000062001206423onstabilityandtrajectoryboundednessoflotkavolterra |
title_full |
On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty |
author_sort |
Badri, Vahid |
journal |
IEEE transactions on automatic control |
journalStr |
IEEE transactions on automatic control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
6423 |
author_browse |
Badri, Vahid |
container_volume |
62 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Badri, Vahid |
doi_str_mv |
10.1109/TAC.2017.2663839 |
dewey-full |
620 |
title_sort |
on stability and trajectory boundedness of lotka–volterra systems with polytopic uncertainty |
title_auth |
On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty |
abstract |
A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples. |
abstractGer |
A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples. |
abstract_unstemmed |
A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 |
container_issue |
12 |
title_short |
On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty |
url |
http://dx.doi.org/10.1109/TAC.2017.2663839 http://ieeexplore.ieee.org/document/7840010 |
remote_bool |
false |
author2 |
Yazdanpanah, M. J Tavazoei, Mohammad Saleh |
author2Str |
Yazdanpanah, M. J Tavazoei, Mohammad Saleh |
ppnlink |
129601705 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TAC.2017.2663839 |
up_date |
2024-07-04T05:27:15.488Z |
_version_ |
1803624996380082176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998665755</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716225440.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAC.2017.2663839</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998665755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998665755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1069-90d8a0b08132e5192ec024e005b716e30c4c26043a7e4e9d2d9f22fa94e5c9490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0005057120170000062001206423onstabilityandtrajectoryboundednessoflotkavolterra</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Badri, Vahid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new approach is proposed to study the stability property of the feasible equilibrium point and the trajectory boundedness of the Lotka-Volterra (LV) dynamics in the presence of polytopic uncertainties. Stability analysis of general LV systems is not straightforward in comparison with its cooperative counterpart. It is shown that, under specific conditions, the trajectory of the cooperative counterpart of the LV system can be considered as an upper bound for the trajectory of the corresponding dynamics. Consequently, the stability of the cooperative counterpart of the LV system leads to boundedness of the trajectory. The obtained results are extended for the LV systems with polytopic uncertainties. It is shown that under specific conditions, there is a region which the trajectory of the system belongs to it as time tends to infinity. Also, the stability of LV systems with polytopic uncertainty is investigated. The obtained results are confirmed through some numerical/application-based examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polytopic uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability criteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundedness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-time behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trajectory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lotka–Volterra (LV) system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yazdanpanah, M. J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tavazoei, Mohammad Saleh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on automatic control</subfield><subfield code="d">New York, NY : Inst., 1963</subfield><subfield code="g">62(2017), 12, Seite 6423-6429</subfield><subfield code="w">(DE-627)129601705</subfield><subfield code="w">(DE-600)241443-0</subfield><subfield code="w">(DE-576)015095320</subfield><subfield code="x">0018-9286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:6423-6429</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAC.2017.2663839</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7840010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2017</subfield><subfield code="e">12</subfield><subfield code="h">6423-6429</subfield></datafield></record></collection>
|
score |
7.3988237 |