Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs
We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX&...
Ausführliche Beschreibung
Autor*in: |
Lee, Soomin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on automatic control - New York, NY : Inst., 1963, 62(2017), 12, Seite 6407-6414 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2017 ; number:12 ; pages:6407-6414 |
Links: |
---|
DOI / URN: |
10.1109/TAC.2017.2650563 |
---|
Katalog-ID: |
OLC1998666131 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1998666131 | ||
003 | DE-627 | ||
005 | 20210716225441.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TAC.2017.2650563 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1998666131 | ||
035 | |a (DE-599)GBVOLC1998666131 | ||
035 | |a (PRQ)c1067-b08b816e9097e30a84e5547743d2dd5924283aa297e5e45ee527280e64ff97430 | ||
035 | |a (KEY)0005057120170000062001206407stochasticdualaveragingfordecentralizedonlineoptim | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Lee, Soomin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis. | ||
650 | 4 | |a Convex functions | |
650 | 4 | |a Stochastic processes | |
650 | 4 | |a Decentralized optimization | |
650 | 4 | |a Resource management | |
650 | 4 | |a Signal processing algorithms | |
650 | 4 | |a Linear programming | |
650 | 4 | |a Algorithm design and analysis | |
650 | 4 | |a pseudo-regret | |
650 | 4 | |a online optimization | |
650 | 4 | |a Optimization | |
650 | 4 | |a stochastic dual-averaging method | |
700 | 1 | |a Nedic, Angelia |4 oth | |
700 | 1 | |a Raginsky, Maxim |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on automatic control |d New York, NY : Inst., 1963 |g 62(2017), 12, Seite 6407-6414 |w (DE-627)129601705 |w (DE-600)241443-0 |w (DE-576)015095320 |x 0018-9286 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2017 |g number:12 |g pages:6407-6414 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TAC.2017.2650563 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7811275 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_193 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4193 | ||
951 | |a AR | ||
952 | |d 62 |j 2017 |e 12 |h 6407-6414 |
author_variant |
s l sl |
---|---|
matchkey_str |
article:00189286:2017----::tcatculvrgnfreetaieolnotmztootmvr |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TAC.2017.2650563 doi PQ20171228 (DE-627)OLC1998666131 (DE-599)GBVOLC1998666131 (PRQ)c1067-b08b816e9097e30a84e5547743d2dd5924283aa297e5e45ee527280e64ff97430 (KEY)0005057120170000062001206407stochasticdualaveragingfordecentralizedonlineoptim DE-627 ger DE-627 rakwb eng 620 DNB Lee, Soomin verfasserin aut Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis. Convex functions Stochastic processes Decentralized optimization Resource management Signal processing algorithms Linear programming Algorithm design and analysis pseudo-regret online optimization Optimization stochastic dual-averaging method Nedic, Angelia oth Raginsky, Maxim oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6407-6414 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6407-6414 http://dx.doi.org/10.1109/TAC.2017.2650563 Volltext http://ieeexplore.ieee.org/document/7811275 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6407-6414 |
spelling |
10.1109/TAC.2017.2650563 doi PQ20171228 (DE-627)OLC1998666131 (DE-599)GBVOLC1998666131 (PRQ)c1067-b08b816e9097e30a84e5547743d2dd5924283aa297e5e45ee527280e64ff97430 (KEY)0005057120170000062001206407stochasticdualaveragingfordecentralizedonlineoptim DE-627 ger DE-627 rakwb eng 620 DNB Lee, Soomin verfasserin aut Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis. Convex functions Stochastic processes Decentralized optimization Resource management Signal processing algorithms Linear programming Algorithm design and analysis pseudo-regret online optimization Optimization stochastic dual-averaging method Nedic, Angelia oth Raginsky, Maxim oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6407-6414 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6407-6414 http://dx.doi.org/10.1109/TAC.2017.2650563 Volltext http://ieeexplore.ieee.org/document/7811275 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6407-6414 |
allfields_unstemmed |
10.1109/TAC.2017.2650563 doi PQ20171228 (DE-627)OLC1998666131 (DE-599)GBVOLC1998666131 (PRQ)c1067-b08b816e9097e30a84e5547743d2dd5924283aa297e5e45ee527280e64ff97430 (KEY)0005057120170000062001206407stochasticdualaveragingfordecentralizedonlineoptim DE-627 ger DE-627 rakwb eng 620 DNB Lee, Soomin verfasserin aut Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis. Convex functions Stochastic processes Decentralized optimization Resource management Signal processing algorithms Linear programming Algorithm design and analysis pseudo-regret online optimization Optimization stochastic dual-averaging method Nedic, Angelia oth Raginsky, Maxim oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6407-6414 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6407-6414 http://dx.doi.org/10.1109/TAC.2017.2650563 Volltext http://ieeexplore.ieee.org/document/7811275 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6407-6414 |
allfieldsGer |
10.1109/TAC.2017.2650563 doi PQ20171228 (DE-627)OLC1998666131 (DE-599)GBVOLC1998666131 (PRQ)c1067-b08b816e9097e30a84e5547743d2dd5924283aa297e5e45ee527280e64ff97430 (KEY)0005057120170000062001206407stochasticdualaveragingfordecentralizedonlineoptim DE-627 ger DE-627 rakwb eng 620 DNB Lee, Soomin verfasserin aut Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis. Convex functions Stochastic processes Decentralized optimization Resource management Signal processing algorithms Linear programming Algorithm design and analysis pseudo-regret online optimization Optimization stochastic dual-averaging method Nedic, Angelia oth Raginsky, Maxim oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6407-6414 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6407-6414 http://dx.doi.org/10.1109/TAC.2017.2650563 Volltext http://ieeexplore.ieee.org/document/7811275 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6407-6414 |
allfieldsSound |
10.1109/TAC.2017.2650563 doi PQ20171228 (DE-627)OLC1998666131 (DE-599)GBVOLC1998666131 (PRQ)c1067-b08b816e9097e30a84e5547743d2dd5924283aa297e5e45ee527280e64ff97430 (KEY)0005057120170000062001206407stochasticdualaveragingfordecentralizedonlineoptim DE-627 ger DE-627 rakwb eng 620 DNB Lee, Soomin verfasserin aut Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis. Convex functions Stochastic processes Decentralized optimization Resource management Signal processing algorithms Linear programming Algorithm design and analysis pseudo-regret online optimization Optimization stochastic dual-averaging method Nedic, Angelia oth Raginsky, Maxim oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 12, Seite 6407-6414 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:12 pages:6407-6414 http://dx.doi.org/10.1109/TAC.2017.2650563 Volltext http://ieeexplore.ieee.org/document/7811275 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 12 6407-6414 |
language |
English |
source |
Enthalten in IEEE transactions on automatic control 62(2017), 12, Seite 6407-6414 volume:62 year:2017 number:12 pages:6407-6414 |
sourceStr |
Enthalten in IEEE transactions on automatic control 62(2017), 12, Seite 6407-6414 volume:62 year:2017 number:12 pages:6407-6414 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Convex functions Stochastic processes Decentralized optimization Resource management Signal processing algorithms Linear programming Algorithm design and analysis pseudo-regret online optimization Optimization stochastic dual-averaging method |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on automatic control |
authorswithroles_txt_mv |
Lee, Soomin @@aut@@ Nedic, Angelia @@oth@@ Raginsky, Maxim @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129601705 |
dewey-sort |
3620 |
id |
OLC1998666131 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998666131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716225441.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAC.2017.2650563</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998666131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998666131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1067-b08b816e9097e30a84e5547743d2dd5924283aa297e5e45ee527280e64ff97430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0005057120170000062001206407stochasticdualaveragingfordecentralizedonlineoptim</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Soomin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decentralized optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resource management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithm design and analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pseudo-regret</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">online optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic dual-averaging method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nedic, Angelia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raginsky, Maxim</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on automatic control</subfield><subfield code="d">New York, NY : Inst., 1963</subfield><subfield code="g">62(2017), 12, Seite 6407-6414</subfield><subfield code="w">(DE-627)129601705</subfield><subfield code="w">(DE-600)241443-0</subfield><subfield code="w">(DE-576)015095320</subfield><subfield code="x">0018-9286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:6407-6414</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAC.2017.2650563</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7811275</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2017</subfield><subfield code="e">12</subfield><subfield code="h">6407-6414</subfield></datafield></record></collection>
|
author |
Lee, Soomin |
spellingShingle |
Lee, Soomin ddc 620 misc Convex functions misc Stochastic processes misc Decentralized optimization misc Resource management misc Signal processing algorithms misc Linear programming misc Algorithm design and analysis misc pseudo-regret misc online optimization misc Optimization misc stochastic dual-averaging method Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs |
authorStr |
Lee, Soomin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601705 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9286 |
topic_title |
620 DNB Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs Convex functions Stochastic processes Decentralized optimization Resource management Signal processing algorithms Linear programming Algorithm design and analysis pseudo-regret online optimization Optimization stochastic dual-averaging method |
topic |
ddc 620 misc Convex functions misc Stochastic processes misc Decentralized optimization misc Resource management misc Signal processing algorithms misc Linear programming misc Algorithm design and analysis misc pseudo-regret misc online optimization misc Optimization misc stochastic dual-averaging method |
topic_unstemmed |
ddc 620 misc Convex functions misc Stochastic processes misc Decentralized optimization misc Resource management misc Signal processing algorithms misc Linear programming misc Algorithm design and analysis misc pseudo-regret misc online optimization misc Optimization misc stochastic dual-averaging method |
topic_browse |
ddc 620 misc Convex functions misc Stochastic processes misc Decentralized optimization misc Resource management misc Signal processing algorithms misc Linear programming misc Algorithm design and analysis misc pseudo-regret misc online optimization misc Optimization misc stochastic dual-averaging method |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a n an m r mr |
hierarchy_parent_title |
IEEE transactions on automatic control |
hierarchy_parent_id |
129601705 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on automatic control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 |
title |
Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs |
ctrlnum |
(DE-627)OLC1998666131 (DE-599)GBVOLC1998666131 (PRQ)c1067-b08b816e9097e30a84e5547743d2dd5924283aa297e5e45ee527280e64ff97430 (KEY)0005057120170000062001206407stochasticdualaveragingfordecentralizedonlineoptim |
title_full |
Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs |
author_sort |
Lee, Soomin |
journal |
IEEE transactions on automatic control |
journalStr |
IEEE transactions on automatic control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
6407 |
author_browse |
Lee, Soomin |
container_volume |
62 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Lee, Soomin |
doi_str_mv |
10.1109/TAC.2017.2650563 |
dewey-full |
620 |
title_sort |
stochastic dual averaging for decentralized online optimization on time-varying communication graphs |
title_auth |
Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs |
abstract |
We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis. |
abstractGer |
We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis. |
abstract_unstemmed |
We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 |
container_issue |
12 |
title_short |
Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs |
url |
http://dx.doi.org/10.1109/TAC.2017.2650563 http://ieeexplore.ieee.org/document/7811275 |
remote_bool |
false |
author2 |
Nedic, Angelia Raginsky, Maxim |
author2Str |
Nedic, Angelia Raginsky, Maxim |
ppnlink |
129601705 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TAC.2017.2650563 |
up_date |
2024-07-04T05:27:18.926Z |
_version_ |
1803624999986135040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998666131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716225441.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAC.2017.2650563</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998666131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998666131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1067-b08b816e9097e30a84e5547743d2dd5924283aa297e5e45ee527280e64ff97430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0005057120170000062001206407stochasticdualaveragingfordecentralizedonlineoptim</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Soomin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider a decentralized online convex optimization problem in a network of agents, where each agent controls only a coordinate (or a part) of the global decision vector. For such a problem, we propose two decentralized stochastic variants (<inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{C}</tex-math> </inline-formula> and <inline-formula><tex-math notation="LaTeX">\mathsf{SODA}\hbox{-}\mathsf{PS}</tex-math> </inline-formula>) of Nesterov's dual averaging method <inline-formula><tex-math notation="LaTeX">(\mathsf{DA}) </tex-math></inline-formula>, where each agent only uses a coordinate of the noise-corrupted gradient in the dual-averaging step. We show that the expected regret bounds for both algorithms have sublinear growth of <inline-formula><tex-math notation="LaTeX">O(\sqrt{T})</tex-math></inline-formula>, with the time horizon <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>, in scenarios when the underlying communication topology is time-varying. The sublinear regret can be obtained when the stepsize is of the form <inline-formula><tex-math notation="LaTeX">1/\sqrt{t}</tex-math></inline-formula> and the objective functions are Lipschitz-continuous convex functions with Lipschitz gradients, and the variance of the noisy gradients is bounded. We also provide simulation results of the proposed algorithms on sensor networks to complement our theoretical analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decentralized optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resource management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithm design and analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pseudo-regret</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">online optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic dual-averaging method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nedic, Angelia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raginsky, Maxim</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on automatic control</subfield><subfield code="d">New York, NY : Inst., 1963</subfield><subfield code="g">62(2017), 12, Seite 6407-6414</subfield><subfield code="w">(DE-627)129601705</subfield><subfield code="w">(DE-600)241443-0</subfield><subfield code="w">(DE-576)015095320</subfield><subfield code="x">0018-9286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:6407-6414</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAC.2017.2650563</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7811275</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2017</subfield><subfield code="e">12</subfield><subfield code="h">6407-6414</subfield></datafield></record></collection>
|
score |
7.401787 |