Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices
Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be a...
Ausführliche Beschreibung
Autor*in: |
Bao-Xuan Zhu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings / A - Edinburgh : Soc., 1943, 147(2017), 6, Seite 1297 |
---|---|
Übergeordnetes Werk: |
volume:147 ; year:2017 ; number:6 ; pages:1297 |
Links: |
---|
DOI / URN: |
10.1017/S0308210516000500 |
---|
Katalog-ID: |
OLC1998687163 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1998687163 | ||
003 | DE-627 | ||
005 | 20220216093735.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1017/S0308210516000500 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1998687163 | ||
035 | |a (DE-599)GBVOLC1998687163 | ||
035 | |a (PRQ)p573-3ec97bc1522b5c70063a564a10c4ae4aadb56e9ef751dc77da3bb9eca738da0e0 | ||
035 | |a (KEY)0009122720170000147000601297logconcavityandstrongqlogconvexityforriordanarrays | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
100 | 0 | |a Bao-Xuan Zhu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property. | ||
650 | 4 | |a Concavity | |
650 | 4 | |a Convexity | |
650 | 4 | |a Pascal (programming language) | |
650 | 4 | |a Triangles | |
650 | 4 | |a Transformations | |
773 | 0 | 8 | |i Enthalten in |t Proceedings / A |d Edinburgh : Soc., 1943 |g 147(2017), 6, Seite 1297 |w (DE-627)129505994 |w (DE-600)209230-X |w (DE-576)01491025X |x 0308-2105 |7 nnns |
773 | 1 | 8 | |g volume:147 |g year:2017 |g number:6 |g pages:1297 |
856 | 4 | 1 | |u http://dx.doi.org/10.1017/S0308210516000500 |3 Volltext |
856 | 4 | 2 | |u https://search.proquest.com/docview/1966053663 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_179 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 147 |j 2017 |e 6 |h 1297 |
author_variant |
b x z bxz |
---|---|
matchkey_str |
article:03082105:2017----::ocnaiynsrnqocneiyorodnras |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1017/S0308210516000500 doi PQ20171228 (DE-627)OLC1998687163 (DE-599)GBVOLC1998687163 (PRQ)p573-3ec97bc1522b5c70063a564a10c4ae4aadb56e9ef751dc77da3bb9eca738da0e0 (KEY)0009122720170000147000601297logconcavityandstrongqlogconvexityforriordanarrays DE-627 ger DE-627 rakwb eng 510 DNB Bao-Xuan Zhu verfasserin aut Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property. Concavity Convexity Pascal (programming language) Triangles Transformations Enthalten in Proceedings / A Edinburgh : Soc., 1943 147(2017), 6, Seite 1297 (DE-627)129505994 (DE-600)209230-X (DE-576)01491025X 0308-2105 nnns volume:147 year:2017 number:6 pages:1297 http://dx.doi.org/10.1017/S0308210516000500 Volltext https://search.proquest.com/docview/1966053663 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_171 GBV_ILN_179 GBV_ILN_381 GBV_ILN_2010 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4318 GBV_ILN_4323 AR 147 2017 6 1297 |
spelling |
10.1017/S0308210516000500 doi PQ20171228 (DE-627)OLC1998687163 (DE-599)GBVOLC1998687163 (PRQ)p573-3ec97bc1522b5c70063a564a10c4ae4aadb56e9ef751dc77da3bb9eca738da0e0 (KEY)0009122720170000147000601297logconcavityandstrongqlogconvexityforriordanarrays DE-627 ger DE-627 rakwb eng 510 DNB Bao-Xuan Zhu verfasserin aut Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property. Concavity Convexity Pascal (programming language) Triangles Transformations Enthalten in Proceedings / A Edinburgh : Soc., 1943 147(2017), 6, Seite 1297 (DE-627)129505994 (DE-600)209230-X (DE-576)01491025X 0308-2105 nnns volume:147 year:2017 number:6 pages:1297 http://dx.doi.org/10.1017/S0308210516000500 Volltext https://search.proquest.com/docview/1966053663 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_171 GBV_ILN_179 GBV_ILN_381 GBV_ILN_2010 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4318 GBV_ILN_4323 AR 147 2017 6 1297 |
allfields_unstemmed |
10.1017/S0308210516000500 doi PQ20171228 (DE-627)OLC1998687163 (DE-599)GBVOLC1998687163 (PRQ)p573-3ec97bc1522b5c70063a564a10c4ae4aadb56e9ef751dc77da3bb9eca738da0e0 (KEY)0009122720170000147000601297logconcavityandstrongqlogconvexityforriordanarrays DE-627 ger DE-627 rakwb eng 510 DNB Bao-Xuan Zhu verfasserin aut Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property. Concavity Convexity Pascal (programming language) Triangles Transformations Enthalten in Proceedings / A Edinburgh : Soc., 1943 147(2017), 6, Seite 1297 (DE-627)129505994 (DE-600)209230-X (DE-576)01491025X 0308-2105 nnns volume:147 year:2017 number:6 pages:1297 http://dx.doi.org/10.1017/S0308210516000500 Volltext https://search.proquest.com/docview/1966053663 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_171 GBV_ILN_179 GBV_ILN_381 GBV_ILN_2010 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4318 GBV_ILN_4323 AR 147 2017 6 1297 |
allfieldsGer |
10.1017/S0308210516000500 doi PQ20171228 (DE-627)OLC1998687163 (DE-599)GBVOLC1998687163 (PRQ)p573-3ec97bc1522b5c70063a564a10c4ae4aadb56e9ef751dc77da3bb9eca738da0e0 (KEY)0009122720170000147000601297logconcavityandstrongqlogconvexityforriordanarrays DE-627 ger DE-627 rakwb eng 510 DNB Bao-Xuan Zhu verfasserin aut Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property. Concavity Convexity Pascal (programming language) Triangles Transformations Enthalten in Proceedings / A Edinburgh : Soc., 1943 147(2017), 6, Seite 1297 (DE-627)129505994 (DE-600)209230-X (DE-576)01491025X 0308-2105 nnns volume:147 year:2017 number:6 pages:1297 http://dx.doi.org/10.1017/S0308210516000500 Volltext https://search.proquest.com/docview/1966053663 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_171 GBV_ILN_179 GBV_ILN_381 GBV_ILN_2010 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4318 GBV_ILN_4323 AR 147 2017 6 1297 |
allfieldsSound |
10.1017/S0308210516000500 doi PQ20171228 (DE-627)OLC1998687163 (DE-599)GBVOLC1998687163 (PRQ)p573-3ec97bc1522b5c70063a564a10c4ae4aadb56e9ef751dc77da3bb9eca738da0e0 (KEY)0009122720170000147000601297logconcavityandstrongqlogconvexityforriordanarrays DE-627 ger DE-627 rakwb eng 510 DNB Bao-Xuan Zhu verfasserin aut Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property. Concavity Convexity Pascal (programming language) Triangles Transformations Enthalten in Proceedings / A Edinburgh : Soc., 1943 147(2017), 6, Seite 1297 (DE-627)129505994 (DE-600)209230-X (DE-576)01491025X 0308-2105 nnns volume:147 year:2017 number:6 pages:1297 http://dx.doi.org/10.1017/S0308210516000500 Volltext https://search.proquest.com/docview/1966053663 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_171 GBV_ILN_179 GBV_ILN_381 GBV_ILN_2010 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4318 GBV_ILN_4323 AR 147 2017 6 1297 |
language |
English |
source |
Enthalten in Proceedings / A 147(2017), 6, Seite 1297 volume:147 year:2017 number:6 pages:1297 |
sourceStr |
Enthalten in Proceedings / A 147(2017), 6, Seite 1297 volume:147 year:2017 number:6 pages:1297 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Concavity Convexity Pascal (programming language) Triangles Transformations |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Proceedings / A |
authorswithroles_txt_mv |
Bao-Xuan Zhu @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129505994 |
dewey-sort |
3510 |
id |
OLC1998687163 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998687163</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216093735.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/S0308210516000500</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998687163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998687163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p573-3ec97bc1522b5c70063a564a10c4ae4aadb56e9ef751dc77da3bb9eca738da0e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009122720170000147000601297logconcavityandstrongqlogconvexityforriordanarrays</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bao-Xuan Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concavity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal (programming language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triangles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformations</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings / A</subfield><subfield code="d">Edinburgh : Soc., 1943</subfield><subfield code="g">147(2017), 6, Seite 1297</subfield><subfield code="w">(DE-627)129505994</subfield><subfield code="w">(DE-600)209230-X</subfield><subfield code="w">(DE-576)01491025X</subfield><subfield code="x">0308-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1297</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1017/S0308210516000500</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1966053663</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">1297</subfield></datafield></record></collection>
|
author |
Bao-Xuan Zhu |
spellingShingle |
Bao-Xuan Zhu ddc 510 misc Concavity misc Convexity misc Pascal (programming language) misc Triangles misc Transformations Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices |
authorStr |
Bao-Xuan Zhu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129505994 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0308-2105 |
topic_title |
510 DNB Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices Concavity Convexity Pascal (programming language) Triangles Transformations |
topic |
ddc 510 misc Concavity misc Convexity misc Pascal (programming language) misc Triangles misc Transformations |
topic_unstemmed |
ddc 510 misc Concavity misc Convexity misc Pascal (programming language) misc Triangles misc Transformations |
topic_browse |
ddc 510 misc Concavity misc Convexity misc Pascal (programming language) misc Triangles misc Transformations |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Proceedings / A |
hierarchy_parent_id |
129505994 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Proceedings / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129505994 (DE-600)209230-X (DE-576)01491025X |
title |
Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices |
ctrlnum |
(DE-627)OLC1998687163 (DE-599)GBVOLC1998687163 (PRQ)p573-3ec97bc1522b5c70063a564a10c4ae4aadb56e9ef751dc77da3bb9eca738da0e0 (KEY)0009122720170000147000601297logconcavityandstrongqlogconvexityforriordanarrays |
title_full |
Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices |
author_sort |
Bao-Xuan Zhu |
journal |
Proceedings / A |
journalStr |
Proceedings / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1297 |
author_browse |
Bao-Xuan Zhu |
container_volume |
147 |
class |
510 DNB |
format_se |
Aufsätze |
author-letter |
Bao-Xuan Zhu |
doi_str_mv |
10.1017/S0308210516000500 |
dewey-full |
510 |
title_sort |
log-concavity and strong q-log-convexity for riordan arrays and recursive matrices |
title_auth |
Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices |
abstract |
Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property. |
abstractGer |
Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property. |
abstract_unstemmed |
Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_171 GBV_ILN_179 GBV_ILN_381 GBV_ILN_2010 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4318 GBV_ILN_4323 |
container_issue |
6 |
title_short |
Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices |
url |
http://dx.doi.org/10.1017/S0308210516000500 https://search.proquest.com/docview/1966053663 |
remote_bool |
false |
ppnlink |
129505994 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1017/S0308210516000500 |
up_date |
2024-07-04T05:29:57.121Z |
_version_ |
1803625165870858240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1998687163</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216093735.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/S0308210516000500</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1998687163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1998687163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p573-3ec97bc1522b5c70063a564a10c4ae4aadb56e9ef751dc77da3bb9eca738da0e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009122720170000147000601297logconcavityandstrongqlogconvexityforriordanarrays</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bao-Xuan Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let [An,k ] n,k [egs]0 be an infinite lower triangular array satisfying the recurrencefor n [egs] 1 and k [egs] 0, where A 0,0 = 1, A 0,k = A k,-1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concavity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal (programming language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triangles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformations</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings / A</subfield><subfield code="d">Edinburgh : Soc., 1943</subfield><subfield code="g">147(2017), 6, Seite 1297</subfield><subfield code="w">(DE-627)129505994</subfield><subfield code="w">(DE-600)209230-X</subfield><subfield code="w">(DE-576)01491025X</subfield><subfield code="x">0308-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1297</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1017/S0308210516000500</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1966053663</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">1297</subfield></datafield></record></collection>
|
score |
7.40166 |