An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia
An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the...
Ausführliche Beschreibung
Autor*in: |
Santiago, R. D [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Molecular physics - London : Taylor & Francis, 1958, 115(2017), 24, Seite 3206 |
---|---|
Übergeordnetes Werk: |
volume:115 ; year:2017 ; number:24 ; pages:3206 |
Links: |
---|
DOI / URN: |
10.1080/00268976.2017.1358829 |
---|
Katalog-ID: |
OLC1999161890 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1999161890 | ||
003 | DE-627 | ||
005 | 20230715083717.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/00268976.2017.1358829 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1999161890 | ||
035 | |a (DE-599)GBVOLC1999161890 | ||
035 | |a (PRQ)i1494-2386a5a54210b3e6c24287fd960e885d2007b50f6ce4af71f8f635b2c14b11e80 | ||
035 | |a (KEY)0082863720170000115002403206approachtoestablishtheconnectionbetweenconfigurati | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 530 |q DE-600 |
100 | 1 | |a Santiago, R. D |e verfasserin |4 aut | |
245 | 1 | 3 | |a An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example. | ||
540 | |a Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 | ||
650 | 4 | |a algebraic realisation | |
650 | 4 | |a Second quantisation | |
650 | 4 | |a morse potential | |
650 | 4 | |a ammonia | |
650 | 4 | |a double minimum potential | |
650 | 4 | |a configuration space | |
650 | 4 | |a double morse potential | |
650 | 4 | |a Algebra | |
650 | 4 | |a Configurations | |
650 | 4 | |a Molecular physics | |
650 | 4 | |a Operators (mathematics) | |
650 | 4 | |a Anharmonicity | |
650 | 4 | |a Ammonia | |
650 | 4 | |a Representations | |
650 | 4 | |a Morse potential | |
650 | 4 | |a Symmetry | |
650 | 4 | |a Potential barriers | |
700 | 1 | |a Arias, J. M |4 oth | |
700 | 1 | |a Gómez-Camacho, J |4 oth | |
700 | 1 | |a Lemus, R |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Molecular physics |d London : Taylor & Francis, 1958 |g 115(2017), 24, Seite 3206 |w (DE-627)129602140 |w (DE-600)241517-3 |w (DE-576)015095878 |x 0026-8976 |7 nnns |
773 | 1 | 8 | |g volume:115 |g year:2017 |g number:24 |g pages:3206 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/00268976.2017.1358829 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/00268976.2017.1358829 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1969032928 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 115 |j 2017 |e 24 |h 3206 |
author_variant |
r d s rd rds |
---|---|
matchkey_str |
article:00268976:2017----::nprahosalsteoncinewecniuainnsnagbacpcsnoeu |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1080/00268976.2017.1358829 doi PQ20171228 (DE-627)OLC1999161890 (DE-599)GBVOLC1999161890 (PRQ)i1494-2386a5a54210b3e6c24287fd960e885d2007b50f6ce4af71f8f635b2c14b11e80 (KEY)0082863720170000115002403206approachtoestablishtheconnectionbetweenconfigurati DE-627 ger DE-627 rakwb eng 570 530 DE-600 Santiago, R. D verfasserin aut An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 algebraic realisation Second quantisation morse potential ammonia double minimum potential configuration space double morse potential Algebra Configurations Molecular physics Operators (mathematics) Anharmonicity Ammonia Representations Morse potential Symmetry Potential barriers Arias, J. M oth Gómez-Camacho, J oth Lemus, R oth Enthalten in Molecular physics London : Taylor & Francis, 1958 115(2017), 24, Seite 3206 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:115 year:2017 number:24 pages:3206 http://dx.doi.org/10.1080/00268976.2017.1358829 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2017.1358829 https://search.proquest.com/docview/1969032928 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_59 GBV_ILN_70 AR 115 2017 24 3206 |
spelling |
10.1080/00268976.2017.1358829 doi PQ20171228 (DE-627)OLC1999161890 (DE-599)GBVOLC1999161890 (PRQ)i1494-2386a5a54210b3e6c24287fd960e885d2007b50f6ce4af71f8f635b2c14b11e80 (KEY)0082863720170000115002403206approachtoestablishtheconnectionbetweenconfigurati DE-627 ger DE-627 rakwb eng 570 530 DE-600 Santiago, R. D verfasserin aut An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 algebraic realisation Second quantisation morse potential ammonia double minimum potential configuration space double morse potential Algebra Configurations Molecular physics Operators (mathematics) Anharmonicity Ammonia Representations Morse potential Symmetry Potential barriers Arias, J. M oth Gómez-Camacho, J oth Lemus, R oth Enthalten in Molecular physics London : Taylor & Francis, 1958 115(2017), 24, Seite 3206 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:115 year:2017 number:24 pages:3206 http://dx.doi.org/10.1080/00268976.2017.1358829 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2017.1358829 https://search.proquest.com/docview/1969032928 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_59 GBV_ILN_70 AR 115 2017 24 3206 |
allfields_unstemmed |
10.1080/00268976.2017.1358829 doi PQ20171228 (DE-627)OLC1999161890 (DE-599)GBVOLC1999161890 (PRQ)i1494-2386a5a54210b3e6c24287fd960e885d2007b50f6ce4af71f8f635b2c14b11e80 (KEY)0082863720170000115002403206approachtoestablishtheconnectionbetweenconfigurati DE-627 ger DE-627 rakwb eng 570 530 DE-600 Santiago, R. D verfasserin aut An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 algebraic realisation Second quantisation morse potential ammonia double minimum potential configuration space double morse potential Algebra Configurations Molecular physics Operators (mathematics) Anharmonicity Ammonia Representations Morse potential Symmetry Potential barriers Arias, J. M oth Gómez-Camacho, J oth Lemus, R oth Enthalten in Molecular physics London : Taylor & Francis, 1958 115(2017), 24, Seite 3206 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:115 year:2017 number:24 pages:3206 http://dx.doi.org/10.1080/00268976.2017.1358829 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2017.1358829 https://search.proquest.com/docview/1969032928 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_59 GBV_ILN_70 AR 115 2017 24 3206 |
allfieldsGer |
10.1080/00268976.2017.1358829 doi PQ20171228 (DE-627)OLC1999161890 (DE-599)GBVOLC1999161890 (PRQ)i1494-2386a5a54210b3e6c24287fd960e885d2007b50f6ce4af71f8f635b2c14b11e80 (KEY)0082863720170000115002403206approachtoestablishtheconnectionbetweenconfigurati DE-627 ger DE-627 rakwb eng 570 530 DE-600 Santiago, R. D verfasserin aut An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 algebraic realisation Second quantisation morse potential ammonia double minimum potential configuration space double morse potential Algebra Configurations Molecular physics Operators (mathematics) Anharmonicity Ammonia Representations Morse potential Symmetry Potential barriers Arias, J. M oth Gómez-Camacho, J oth Lemus, R oth Enthalten in Molecular physics London : Taylor & Francis, 1958 115(2017), 24, Seite 3206 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:115 year:2017 number:24 pages:3206 http://dx.doi.org/10.1080/00268976.2017.1358829 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2017.1358829 https://search.proquest.com/docview/1969032928 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_59 GBV_ILN_70 AR 115 2017 24 3206 |
allfieldsSound |
10.1080/00268976.2017.1358829 doi PQ20171228 (DE-627)OLC1999161890 (DE-599)GBVOLC1999161890 (PRQ)i1494-2386a5a54210b3e6c24287fd960e885d2007b50f6ce4af71f8f635b2c14b11e80 (KEY)0082863720170000115002403206approachtoestablishtheconnectionbetweenconfigurati DE-627 ger DE-627 rakwb eng 570 530 DE-600 Santiago, R. D verfasserin aut An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 algebraic realisation Second quantisation morse potential ammonia double minimum potential configuration space double morse potential Algebra Configurations Molecular physics Operators (mathematics) Anharmonicity Ammonia Representations Morse potential Symmetry Potential barriers Arias, J. M oth Gómez-Camacho, J oth Lemus, R oth Enthalten in Molecular physics London : Taylor & Francis, 1958 115(2017), 24, Seite 3206 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:115 year:2017 number:24 pages:3206 http://dx.doi.org/10.1080/00268976.2017.1358829 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2017.1358829 https://search.proquest.com/docview/1969032928 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_59 GBV_ILN_70 AR 115 2017 24 3206 |
language |
English |
source |
Enthalten in Molecular physics 115(2017), 24, Seite 3206 volume:115 year:2017 number:24 pages:3206 |
sourceStr |
Enthalten in Molecular physics 115(2017), 24, Seite 3206 volume:115 year:2017 number:24 pages:3206 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
algebraic realisation Second quantisation morse potential ammonia double minimum potential configuration space double morse potential Algebra Configurations Molecular physics Operators (mathematics) Anharmonicity Ammonia Representations Morse potential Symmetry Potential barriers |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Molecular physics |
authorswithroles_txt_mv |
Santiago, R. D @@aut@@ Arias, J. M @@oth@@ Gómez-Camacho, J @@oth@@ Lemus, R @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129602140 |
dewey-sort |
3570 |
id |
OLC1999161890 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999161890</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715083717.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00268976.2017.1358829</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999161890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999161890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1494-2386a5a54210b3e6c24287fd960e885d2007b50f6ce4af71f8f635b2c14b11e80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0082863720170000115002403206approachtoestablishtheconnectionbetweenconfigurati</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santiago, R. D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algebraic realisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Second quantisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morse potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ammonia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double minimum potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">configuration space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double morse potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Configurations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operators (mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anharmonicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ammonia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morse potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential barriers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arias, J. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gómez-Camacho, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lemus, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular physics</subfield><subfield code="d">London : Taylor & Francis, 1958</subfield><subfield code="g">115(2017), 24, Seite 3206</subfield><subfield code="w">(DE-627)129602140</subfield><subfield code="w">(DE-600)241517-3</subfield><subfield code="w">(DE-576)015095878</subfield><subfield code="x">0026-8976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:115</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:24</subfield><subfield code="g">pages:3206</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00268976.2017.1358829</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00268976.2017.1358829</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1969032928</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">115</subfield><subfield code="j">2017</subfield><subfield code="e">24</subfield><subfield code="h">3206</subfield></datafield></record></collection>
|
author |
Santiago, R. D |
spellingShingle |
Santiago, R. D ddc 570 misc algebraic realisation misc Second quantisation misc morse potential misc ammonia misc double minimum potential misc configuration space misc double morse potential misc Algebra misc Configurations misc Molecular physics misc Operators (mathematics) misc Anharmonicity misc Ammonia misc Representations misc Morse potential misc Symmetry misc Potential barriers An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia |
authorStr |
Santiago, R. D |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129602140 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-8976 |
topic_title |
570 530 DE-600 An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia algebraic realisation Second quantisation morse potential ammonia double minimum potential configuration space double morse potential Algebra Configurations Molecular physics Operators (mathematics) Anharmonicity Ammonia Representations Morse potential Symmetry Potential barriers |
topic |
ddc 570 misc algebraic realisation misc Second quantisation misc morse potential misc ammonia misc double minimum potential misc configuration space misc double morse potential misc Algebra misc Configurations misc Molecular physics misc Operators (mathematics) misc Anharmonicity misc Ammonia misc Representations misc Morse potential misc Symmetry misc Potential barriers |
topic_unstemmed |
ddc 570 misc algebraic realisation misc Second quantisation misc morse potential misc ammonia misc double minimum potential misc configuration space misc double morse potential misc Algebra misc Configurations misc Molecular physics misc Operators (mathematics) misc Anharmonicity misc Ammonia misc Representations misc Morse potential misc Symmetry misc Potential barriers |
topic_browse |
ddc 570 misc algebraic realisation misc Second quantisation misc morse potential misc ammonia misc double minimum potential misc configuration space misc double morse potential misc Algebra misc Configurations misc Molecular physics misc Operators (mathematics) misc Anharmonicity misc Ammonia misc Representations misc Morse potential misc Symmetry misc Potential barriers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j m a jm jma j g c jgc r l rl |
hierarchy_parent_title |
Molecular physics |
hierarchy_parent_id |
129602140 |
dewey-tens |
570 - Life sciences; biology 530 - Physics |
hierarchy_top_title |
Molecular physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 |
title |
An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia |
ctrlnum |
(DE-627)OLC1999161890 (DE-599)GBVOLC1999161890 (PRQ)i1494-2386a5a54210b3e6c24287fd960e885d2007b50f6ce4af71f8f635b2c14b11e80 (KEY)0082863720170000115002403206approachtoestablishtheconnectionbetweenconfigurati |
title_full |
An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia |
author_sort |
Santiago, R. D |
journal |
Molecular physics |
journalStr |
Molecular physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
3206 |
author_browse |
Santiago, R. D |
container_volume |
115 |
class |
570 530 DE-600 |
format_se |
Aufsätze |
author-letter |
Santiago, R. D |
doi_str_mv |
10.1080/00268976.2017.1358829 |
dewey-full |
570 530 |
title_sort |
approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia |
title_auth |
An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia |
abstract |
An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example. |
abstractGer |
An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example. |
abstract_unstemmed |
An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_59 GBV_ILN_70 |
container_issue |
24 |
title_short |
An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia |
url |
http://dx.doi.org/10.1080/00268976.2017.1358829 http://www.tandfonline.com/doi/abs/10.1080/00268976.2017.1358829 https://search.proquest.com/docview/1969032928 |
remote_bool |
false |
author2 |
Arias, J. M Gómez-Camacho, J Lemus, R |
author2Str |
Arias, J. M Gómez-Camacho, J Lemus, R |
ppnlink |
129602140 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1080/00268976.2017.1358829 |
up_date |
2024-07-04T06:30:26.057Z |
_version_ |
1803628971081859072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999161890</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715083717.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00268976.2017.1358829</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999161890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999161890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1494-2386a5a54210b3e6c24287fd960e885d2007b50f6ce4af71f8f635b2c14b11e80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0082863720170000115002403206approachtoestablishtheconnectionbetweenconfigurati</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santiago, R. D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: application to ammonia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An approach aimed to connect configuration and algebraic spaces is discussed. This approach emerges as the need to translate a vibrational description in configuration space to an algebraic representation based on unitary dynamical algebras, where a straightforward connection does not exist e.g. the vibron model case. Our method is based on the mapping of the algebraic to configuration states, a premise that allows arbitrary operators in configuration to be expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimisation procedure and given in terms of matrix elements defined in configuration space. We apply the general formalism to the Morse potential, representing anharmonic vibrations in a molecule, as a benchmark case where a dynamical symmetry exits, and to the symmetric double-Morse potential, representing vibrations that can tunnel through a potential barrier, as an example in which a dynamical symmetry is not present. We discuss how the tunnelling effect in the double Morse can be described very simply in the su(2) algebraic representation, taking the ammonia inversion vibrational spectrum as an example.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algebraic realisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Second quantisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morse potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ammonia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double minimum potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">configuration space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double morse potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Configurations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operators (mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anharmonicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ammonia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morse potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential barriers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arias, J. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gómez-Camacho, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lemus, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular physics</subfield><subfield code="d">London : Taylor & Francis, 1958</subfield><subfield code="g">115(2017), 24, Seite 3206</subfield><subfield code="w">(DE-627)129602140</subfield><subfield code="w">(DE-600)241517-3</subfield><subfield code="w">(DE-576)015095878</subfield><subfield code="x">0026-8976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:115</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:24</subfield><subfield code="g">pages:3206</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00268976.2017.1358829</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00268976.2017.1358829</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1969032928</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">115</subfield><subfield code="j">2017</subfield><subfield code="e">24</subfield><subfield code="h">3206</subfield></datafield></record></collection>
|
score |
7.4009056 |