Bounds for Shannon and Zipf‐Mandelbrot entropies
Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies....
Ausführliche Beschreibung
Autor*in: |
Adil Khan, Muhammad [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematical methods in the applied sciences - Chichester, West Sussex : Wiley, 1979, 40(2017), 18, Seite 7316-7322 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2017 ; number:18 ; pages:7316-7322 |
Links: |
---|
DOI / URN: |
10.1002/mma.4531 |
---|
Katalog-ID: |
OLC199917545X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199917545X | ||
003 | DE-627 | ||
005 | 20220220080928.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/mma.4531 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC199917545X | ||
035 | |a (DE-599)GBVOLC199917545X | ||
035 | |a (PRQ)p661-40ab6c0c5d528b03722d95f5941cee9a3fce8376289b6f2fc61f0437b490ce93 | ||
035 | |a (KEY)0093427520170000040001807316boundsforshannonandzipfmandelbrotentropies | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.80 |2 bkl | ||
100 | 1 | |a Adil Khan, Muhammad |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bounds for Shannon and Zipf‐Mandelbrot entropies |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy. | ||
540 | |a Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. | ||
650 | 4 | |a Zipf‐Mandelbrot entropy | |
650 | 4 | |a Shannon entropy | |
650 | 4 | |a Jensen inequality | |
650 | 4 | |a convex function | |
650 | 4 | |a Entropy (Information theory) | |
650 | 4 | |a Information theory | |
650 | 4 | |a Entropy | |
700 | 1 | |a Pečaric, Đilda |4 oth | |
700 | 1 | |a Pečarić, Josip |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Mathematical methods in the applied sciences |d Chichester, West Sussex : Wiley, 1979 |g 40(2017), 18, Seite 7316-7322 |w (DE-627)130619051 |w (DE-600)795328-8 |w (DE-576)016125967 |x 0170-4214 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2017 |g number:18 |g pages:7316-7322 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/mma.4531 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/mma.4531/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1968883466 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4318 | ||
936 | b | k | |a 31.80 |q AVZ |
951 | |a AR | ||
952 | |d 40 |j 2017 |e 18 |h 7316-7322 |
author_variant |
m a ma |
---|---|
matchkey_str |
article:01704214:2017----::onsosannnzpmneb |
hierarchy_sort_str |
2017 |
bklnumber |
31.80 |
publishDate |
2017 |
allfields |
10.1002/mma.4531 doi PQ20171228 (DE-627)OLC199917545X (DE-599)GBVOLC199917545X (PRQ)p661-40ab6c0c5d528b03722d95f5941cee9a3fce8376289b6f2fc61f0437b490ce93 (KEY)0093427520170000040001807316boundsforshannonandzipfmandelbrotentropies DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Adil Khan, Muhammad verfasserin aut Bounds for Shannon and Zipf‐Mandelbrot entropies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Zipf‐Mandelbrot entropy Shannon entropy Jensen inequality convex function Entropy (Information theory) Information theory Entropy Pečaric, Đilda oth Pečarić, Josip oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 40(2017), 18, Seite 7316-7322 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:40 year:2017 number:18 pages:7316-7322 http://dx.doi.org/10.1002/mma.4531 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.4531/abstract https://search.proquest.com/docview/1968883466 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 40 2017 18 7316-7322 |
spelling |
10.1002/mma.4531 doi PQ20171228 (DE-627)OLC199917545X (DE-599)GBVOLC199917545X (PRQ)p661-40ab6c0c5d528b03722d95f5941cee9a3fce8376289b6f2fc61f0437b490ce93 (KEY)0093427520170000040001807316boundsforshannonandzipfmandelbrotentropies DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Adil Khan, Muhammad verfasserin aut Bounds for Shannon and Zipf‐Mandelbrot entropies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Zipf‐Mandelbrot entropy Shannon entropy Jensen inequality convex function Entropy (Information theory) Information theory Entropy Pečaric, Đilda oth Pečarić, Josip oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 40(2017), 18, Seite 7316-7322 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:40 year:2017 number:18 pages:7316-7322 http://dx.doi.org/10.1002/mma.4531 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.4531/abstract https://search.proquest.com/docview/1968883466 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 40 2017 18 7316-7322 |
allfields_unstemmed |
10.1002/mma.4531 doi PQ20171228 (DE-627)OLC199917545X (DE-599)GBVOLC199917545X (PRQ)p661-40ab6c0c5d528b03722d95f5941cee9a3fce8376289b6f2fc61f0437b490ce93 (KEY)0093427520170000040001807316boundsforshannonandzipfmandelbrotentropies DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Adil Khan, Muhammad verfasserin aut Bounds for Shannon and Zipf‐Mandelbrot entropies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Zipf‐Mandelbrot entropy Shannon entropy Jensen inequality convex function Entropy (Information theory) Information theory Entropy Pečaric, Đilda oth Pečarić, Josip oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 40(2017), 18, Seite 7316-7322 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:40 year:2017 number:18 pages:7316-7322 http://dx.doi.org/10.1002/mma.4531 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.4531/abstract https://search.proquest.com/docview/1968883466 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 40 2017 18 7316-7322 |
allfieldsGer |
10.1002/mma.4531 doi PQ20171228 (DE-627)OLC199917545X (DE-599)GBVOLC199917545X (PRQ)p661-40ab6c0c5d528b03722d95f5941cee9a3fce8376289b6f2fc61f0437b490ce93 (KEY)0093427520170000040001807316boundsforshannonandzipfmandelbrotentropies DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Adil Khan, Muhammad verfasserin aut Bounds for Shannon and Zipf‐Mandelbrot entropies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Zipf‐Mandelbrot entropy Shannon entropy Jensen inequality convex function Entropy (Information theory) Information theory Entropy Pečaric, Đilda oth Pečarić, Josip oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 40(2017), 18, Seite 7316-7322 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:40 year:2017 number:18 pages:7316-7322 http://dx.doi.org/10.1002/mma.4531 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.4531/abstract https://search.proquest.com/docview/1968883466 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 40 2017 18 7316-7322 |
allfieldsSound |
10.1002/mma.4531 doi PQ20171228 (DE-627)OLC199917545X (DE-599)GBVOLC199917545X (PRQ)p661-40ab6c0c5d528b03722d95f5941cee9a3fce8376289b6f2fc61f0437b490ce93 (KEY)0093427520170000040001807316boundsforshannonandzipfmandelbrotentropies DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Adil Khan, Muhammad verfasserin aut Bounds for Shannon and Zipf‐Mandelbrot entropies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Zipf‐Mandelbrot entropy Shannon entropy Jensen inequality convex function Entropy (Information theory) Information theory Entropy Pečaric, Đilda oth Pečarić, Josip oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 40(2017), 18, Seite 7316-7322 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:40 year:2017 number:18 pages:7316-7322 http://dx.doi.org/10.1002/mma.4531 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.4531/abstract https://search.proquest.com/docview/1968883466 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 40 2017 18 7316-7322 |
language |
English |
source |
Enthalten in Mathematical methods in the applied sciences 40(2017), 18, Seite 7316-7322 volume:40 year:2017 number:18 pages:7316-7322 |
sourceStr |
Enthalten in Mathematical methods in the applied sciences 40(2017), 18, Seite 7316-7322 volume:40 year:2017 number:18 pages:7316-7322 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Zipf‐Mandelbrot entropy Shannon entropy Jensen inequality convex function Entropy (Information theory) Information theory Entropy |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematical methods in the applied sciences |
authorswithroles_txt_mv |
Adil Khan, Muhammad @@aut@@ Pečaric, Đilda @@oth@@ Pečarić, Josip @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130619051 |
dewey-sort |
3510 |
id |
OLC199917545X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199917545X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220080928.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/mma.4531</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199917545X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199917545X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p661-40ab6c0c5d528b03722d95f5941cee9a3fce8376289b6f2fc61f0437b490ce93</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0093427520170000040001807316boundsforshannonandzipfmandelbrotentropies</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adil Khan, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bounds for Shannon and Zipf‐Mandelbrot entropies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zipf‐Mandelbrot entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shannon entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jensen inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy (Information theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pečaric, Đilda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pečarić, Josip</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical methods in the applied sciences</subfield><subfield code="d">Chichester, West Sussex : Wiley, 1979</subfield><subfield code="g">40(2017), 18, Seite 7316-7322</subfield><subfield code="w">(DE-627)130619051</subfield><subfield code="w">(DE-600)795328-8</subfield><subfield code="w">(DE-576)016125967</subfield><subfield code="x">0170-4214</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:18</subfield><subfield code="g">pages:7316-7322</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/mma.4531</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/mma.4531/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1968883466</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2017</subfield><subfield code="e">18</subfield><subfield code="h">7316-7322</subfield></datafield></record></collection>
|
author |
Adil Khan, Muhammad |
spellingShingle |
Adil Khan, Muhammad ddc 510 bkl 31.80 misc Zipf‐Mandelbrot entropy misc Shannon entropy misc Jensen inequality misc convex function misc Entropy (Information theory) misc Information theory misc Entropy Bounds for Shannon and Zipf‐Mandelbrot entropies |
authorStr |
Adil Khan, Muhammad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130619051 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0170-4214 |
topic_title |
510 DE-600 31.80 bkl Bounds for Shannon and Zipf‐Mandelbrot entropies Zipf‐Mandelbrot entropy Shannon entropy Jensen inequality convex function Entropy (Information theory) Information theory Entropy |
topic |
ddc 510 bkl 31.80 misc Zipf‐Mandelbrot entropy misc Shannon entropy misc Jensen inequality misc convex function misc Entropy (Information theory) misc Information theory misc Entropy |
topic_unstemmed |
ddc 510 bkl 31.80 misc Zipf‐Mandelbrot entropy misc Shannon entropy misc Jensen inequality misc convex function misc Entropy (Information theory) misc Information theory misc Entropy |
topic_browse |
ddc 510 bkl 31.80 misc Zipf‐Mandelbrot entropy misc Shannon entropy misc Jensen inequality misc convex function misc Entropy (Information theory) misc Information theory misc Entropy |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
đ p đp j p jp |
hierarchy_parent_title |
Mathematical methods in the applied sciences |
hierarchy_parent_id |
130619051 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematical methods in the applied sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 |
title |
Bounds for Shannon and Zipf‐Mandelbrot entropies |
ctrlnum |
(DE-627)OLC199917545X (DE-599)GBVOLC199917545X (PRQ)p661-40ab6c0c5d528b03722d95f5941cee9a3fce8376289b6f2fc61f0437b490ce93 (KEY)0093427520170000040001807316boundsforshannonandzipfmandelbrotentropies |
title_full |
Bounds for Shannon and Zipf‐Mandelbrot entropies |
author_sort |
Adil Khan, Muhammad |
journal |
Mathematical methods in the applied sciences |
journalStr |
Mathematical methods in the applied sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
7316 |
author_browse |
Adil Khan, Muhammad |
container_volume |
40 |
class |
510 DE-600 31.80 bkl |
format_se |
Aufsätze |
author-letter |
Adil Khan, Muhammad |
doi_str_mv |
10.1002/mma.4531 |
dewey-full |
510 |
title_sort |
bounds for shannon and zipf‐mandelbrot entropies |
title_auth |
Bounds for Shannon and Zipf‐Mandelbrot entropies |
abstract |
Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy. |
abstractGer |
Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy. |
abstract_unstemmed |
Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 |
container_issue |
18 |
title_short |
Bounds for Shannon and Zipf‐Mandelbrot entropies |
url |
http://dx.doi.org/10.1002/mma.4531 http://onlinelibrary.wiley.com/doi/10.1002/mma.4531/abstract https://search.proquest.com/docview/1968883466 |
remote_bool |
false |
author2 |
Pečaric, Đilda Pečarić, Josip |
author2Str |
Pečaric, Đilda Pečarić, Josip |
ppnlink |
130619051 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/mma.4531 |
up_date |
2024-07-04T06:32:01.838Z |
_version_ |
1803629071528099840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199917545X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220080928.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/mma.4531</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199917545X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199917545X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p661-40ab6c0c5d528b03722d95f5941cee9a3fce8376289b6f2fc61f0437b490ce93</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0093427520170000040001807316boundsforshannonandzipfmandelbrotentropies</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adil Khan, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bounds for Shannon and Zipf‐Mandelbrot entropies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Shannon and Zipf‐Mandelbrot entropies have many applications in many applied sciences, for example, in information theory, biology and economics, etc. In this paper, we consider two refinements of the well‐know Jensen inequality and obtain different bounds for Shannon and Zipf‐Mandelbrot entropies. First of all, we use some convex functions and manipulate the weights and domain of the functions and deduce results for Shannon entropy. We also discuss their particular cases. By using Zipf‐Mandelbrot laws for different parameters in Shannon entropies results, we obtain bounds for Zipf‐Mandelbrot entropy. The idea used in this paper for obtaining the results may stimulate further research in this area, particularly for Zipf‐Mandelbrot entropy.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zipf‐Mandelbrot entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shannon entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jensen inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy (Information theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pečaric, Đilda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pečarić, Josip</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical methods in the applied sciences</subfield><subfield code="d">Chichester, West Sussex : Wiley, 1979</subfield><subfield code="g">40(2017), 18, Seite 7316-7322</subfield><subfield code="w">(DE-627)130619051</subfield><subfield code="w">(DE-600)795328-8</subfield><subfield code="w">(DE-576)016125967</subfield><subfield code="x">0170-4214</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:18</subfield><subfield code="g">pages:7316-7322</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/mma.4531</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/mma.4531/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1968883466</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2017</subfield><subfield code="e">18</subfield><subfield code="h">7316-7322</subfield></datafield></record></collection>
|
score |
7.3993654 |