Relevance of the DFT method to study expanded porphyrins with different topologies
Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications i...
Ausführliche Beschreibung
Autor*in: |
Torrent‐Sucarrat, Miquel [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Wiley Periodicals, Inc. |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Journal of computational chemistry - New York, NY : Wiley, 1980, 38(2017), 32, Seite 2819-2828 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2017 ; number:32 ; pages:2819-2828 |
Links: |
---|
DOI / URN: |
10.1002/jcc.25074 |
---|
Katalog-ID: |
OLC1999188454 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1999188454 | ||
003 | DE-627 | ||
005 | 20230508065954.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/jcc.25074 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1999188454 | ||
035 | |a (DE-599)GBVOLC1999188454 | ||
035 | |a (PRQ)p1334-8d267ea7af640fe62734b7ee558dd91334fbfe2c08e924ed467a28ca08da9f463 | ||
035 | |a (KEY)0100255420170000038003202819relevanceofthedftmethodtostudyexpandedporphyrinswi | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a VA 5105 |q AVZ |2 rvk | ||
084 | |a 35.05 |2 bkl | ||
100 | 1 | |a Torrent‐Sucarrat, Miquel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Relevance of the DFT method to study expanded porphyrins with different topologies |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals. | ||
540 | |a Nutzungsrecht: © 2017 Wiley Periodicals, Inc. | ||
650 | 4 | |a DLPNO‐CCSD(T) | |
650 | 4 | |a aromaticity | |
650 | 4 | |a Möbius | |
650 | 4 | |a spurious stationary points | |
650 | 4 | |a Hückel | |
650 | 4 | |a expanded porphyrin | |
650 | 4 | |a density functional theory methods | |
650 | 4 | |a Porphyrins | |
650 | 4 | |a Aromatic compounds | |
650 | 4 | |a Functionals | |
650 | 4 | |a Switches | |
650 | 4 | |a Density functional theory | |
650 | 4 | |a Topology | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Potential energy | |
650 | 4 | |a Dispersion | |
700 | 1 | |a Navarro, Sara |4 oth | |
700 | 1 | |a Cossío, Fernando P |4 oth | |
700 | 1 | |a Anglada, Josep M |4 oth | |
700 | 1 | |a Luis, Josep M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of computational chemistry |d New York, NY : Wiley, 1980 |g 38(2017), 32, Seite 2819-2828 |w (DE-627)129860301 |w (DE-600)282917-4 |w (DE-576)015169324 |x 0192-8651 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2017 |g number:32 |g pages:2819-2828 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/jcc.25074 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/jcc.25074/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1956366947 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | r | v | |a VA 5105 |
936 | b | k | |a 35.05 |q AVZ |
951 | |a AR | ||
952 | |d 38 |j 2017 |e 32 |h 2819-2828 |
author_variant |
m t mt |
---|---|
matchkey_str |
article:01928651:2017----::eeacotefmtotsuyxaddopyisi |
hierarchy_sort_str |
2017 |
bklnumber |
35.05 |
publishDate |
2017 |
allfields |
10.1002/jcc.25074 doi PQ20171228 (DE-627)OLC1999188454 (DE-599)GBVOLC1999188454 (PRQ)p1334-8d267ea7af640fe62734b7ee558dd91334fbfe2c08e924ed467a28ca08da9f463 (KEY)0100255420170000038003202819relevanceofthedftmethodtostudyexpandedporphyrinswi DE-627 ger DE-627 rakwb eng 540 DE-600 VA 5105 AVZ rvk 35.05 bkl Torrent‐Sucarrat, Miquel verfasserin aut Relevance of the DFT method to study expanded porphyrins with different topologies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. DLPNO‐CCSD(T) aromaticity Möbius spurious stationary points Hückel expanded porphyrin density functional theory methods Porphyrins Aromatic compounds Functionals Switches Density functional theory Topology Mathematical analysis Potential energy Dispersion Navarro, Sara oth Cossío, Fernando P oth Anglada, Josep M oth Luis, Josep M oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 38(2017), 32, Seite 2819-2828 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:38 year:2017 number:32 pages:2819-2828 http://dx.doi.org/10.1002/jcc.25074 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.25074/abstract https://search.proquest.com/docview/1956366947 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 38 2017 32 2819-2828 |
spelling |
10.1002/jcc.25074 doi PQ20171228 (DE-627)OLC1999188454 (DE-599)GBVOLC1999188454 (PRQ)p1334-8d267ea7af640fe62734b7ee558dd91334fbfe2c08e924ed467a28ca08da9f463 (KEY)0100255420170000038003202819relevanceofthedftmethodtostudyexpandedporphyrinswi DE-627 ger DE-627 rakwb eng 540 DE-600 VA 5105 AVZ rvk 35.05 bkl Torrent‐Sucarrat, Miquel verfasserin aut Relevance of the DFT method to study expanded porphyrins with different topologies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. DLPNO‐CCSD(T) aromaticity Möbius spurious stationary points Hückel expanded porphyrin density functional theory methods Porphyrins Aromatic compounds Functionals Switches Density functional theory Topology Mathematical analysis Potential energy Dispersion Navarro, Sara oth Cossío, Fernando P oth Anglada, Josep M oth Luis, Josep M oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 38(2017), 32, Seite 2819-2828 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:38 year:2017 number:32 pages:2819-2828 http://dx.doi.org/10.1002/jcc.25074 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.25074/abstract https://search.proquest.com/docview/1956366947 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 38 2017 32 2819-2828 |
allfields_unstemmed |
10.1002/jcc.25074 doi PQ20171228 (DE-627)OLC1999188454 (DE-599)GBVOLC1999188454 (PRQ)p1334-8d267ea7af640fe62734b7ee558dd91334fbfe2c08e924ed467a28ca08da9f463 (KEY)0100255420170000038003202819relevanceofthedftmethodtostudyexpandedporphyrinswi DE-627 ger DE-627 rakwb eng 540 DE-600 VA 5105 AVZ rvk 35.05 bkl Torrent‐Sucarrat, Miquel verfasserin aut Relevance of the DFT method to study expanded porphyrins with different topologies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. DLPNO‐CCSD(T) aromaticity Möbius spurious stationary points Hückel expanded porphyrin density functional theory methods Porphyrins Aromatic compounds Functionals Switches Density functional theory Topology Mathematical analysis Potential energy Dispersion Navarro, Sara oth Cossío, Fernando P oth Anglada, Josep M oth Luis, Josep M oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 38(2017), 32, Seite 2819-2828 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:38 year:2017 number:32 pages:2819-2828 http://dx.doi.org/10.1002/jcc.25074 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.25074/abstract https://search.proquest.com/docview/1956366947 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 38 2017 32 2819-2828 |
allfieldsGer |
10.1002/jcc.25074 doi PQ20171228 (DE-627)OLC1999188454 (DE-599)GBVOLC1999188454 (PRQ)p1334-8d267ea7af640fe62734b7ee558dd91334fbfe2c08e924ed467a28ca08da9f463 (KEY)0100255420170000038003202819relevanceofthedftmethodtostudyexpandedporphyrinswi DE-627 ger DE-627 rakwb eng 540 DE-600 VA 5105 AVZ rvk 35.05 bkl Torrent‐Sucarrat, Miquel verfasserin aut Relevance of the DFT method to study expanded porphyrins with different topologies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. DLPNO‐CCSD(T) aromaticity Möbius spurious stationary points Hückel expanded porphyrin density functional theory methods Porphyrins Aromatic compounds Functionals Switches Density functional theory Topology Mathematical analysis Potential energy Dispersion Navarro, Sara oth Cossío, Fernando P oth Anglada, Josep M oth Luis, Josep M oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 38(2017), 32, Seite 2819-2828 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:38 year:2017 number:32 pages:2819-2828 http://dx.doi.org/10.1002/jcc.25074 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.25074/abstract https://search.proquest.com/docview/1956366947 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 38 2017 32 2819-2828 |
allfieldsSound |
10.1002/jcc.25074 doi PQ20171228 (DE-627)OLC1999188454 (DE-599)GBVOLC1999188454 (PRQ)p1334-8d267ea7af640fe62734b7ee558dd91334fbfe2c08e924ed467a28ca08da9f463 (KEY)0100255420170000038003202819relevanceofthedftmethodtostudyexpandedporphyrinswi DE-627 ger DE-627 rakwb eng 540 DE-600 VA 5105 AVZ rvk 35.05 bkl Torrent‐Sucarrat, Miquel verfasserin aut Relevance of the DFT method to study expanded porphyrins with different topologies 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals. Nutzungsrecht: © 2017 Wiley Periodicals, Inc. DLPNO‐CCSD(T) aromaticity Möbius spurious stationary points Hückel expanded porphyrin density functional theory methods Porphyrins Aromatic compounds Functionals Switches Density functional theory Topology Mathematical analysis Potential energy Dispersion Navarro, Sara oth Cossío, Fernando P oth Anglada, Josep M oth Luis, Josep M oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 38(2017), 32, Seite 2819-2828 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:38 year:2017 number:32 pages:2819-2828 http://dx.doi.org/10.1002/jcc.25074 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.25074/abstract https://search.proquest.com/docview/1956366947 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 38 2017 32 2819-2828 |
language |
English |
source |
Enthalten in Journal of computational chemistry 38(2017), 32, Seite 2819-2828 volume:38 year:2017 number:32 pages:2819-2828 |
sourceStr |
Enthalten in Journal of computational chemistry 38(2017), 32, Seite 2819-2828 volume:38 year:2017 number:32 pages:2819-2828 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DLPNO‐CCSD(T) aromaticity Möbius spurious stationary points Hückel expanded porphyrin density functional theory methods Porphyrins Aromatic compounds Functionals Switches Density functional theory Topology Mathematical analysis Potential energy Dispersion |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of computational chemistry |
authorswithroles_txt_mv |
Torrent‐Sucarrat, Miquel @@aut@@ Navarro, Sara @@oth@@ Cossío, Fernando P @@oth@@ Anglada, Josep M @@oth@@ Luis, Josep M @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129860301 |
dewey-sort |
3540 |
id |
OLC1999188454 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999188454</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508065954.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/jcc.25074</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999188454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999188454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1334-8d267ea7af640fe62734b7ee558dd91334fbfe2c08e924ed467a28ca08da9f463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0100255420170000038003202819relevanceofthedftmethodtostudyexpandedporphyrinswi</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5105</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Torrent‐Sucarrat, Miquel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relevance of the DFT method to study expanded porphyrins with different topologies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Wiley Periodicals, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DLPNO‐CCSD(T)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aromaticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Möbius</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spurious stationary points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hückel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">expanded porphyrin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">density functional theory methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porphyrins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aromatic compounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functionals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switches</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density functional theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dispersion</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Navarro, Sara</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cossío, Fernando P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anglada, Josep M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luis, Josep M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational chemistry</subfield><subfield code="d">New York, NY : Wiley, 1980</subfield><subfield code="g">38(2017), 32, Seite 2819-2828</subfield><subfield code="w">(DE-627)129860301</subfield><subfield code="w">(DE-600)282917-4</subfield><subfield code="w">(DE-576)015169324</subfield><subfield code="x">0192-8651</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:32</subfield><subfield code="g">pages:2819-2828</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/jcc.25074</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/jcc.25074/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1956366947</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5105</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.05</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2017</subfield><subfield code="e">32</subfield><subfield code="h">2819-2828</subfield></datafield></record></collection>
|
author |
Torrent‐Sucarrat, Miquel |
spellingShingle |
Torrent‐Sucarrat, Miquel ddc 540 rvk VA 5105 bkl 35.05 misc DLPNO‐CCSD(T) misc aromaticity misc Möbius misc spurious stationary points misc Hückel misc expanded porphyrin misc density functional theory methods misc Porphyrins misc Aromatic compounds misc Functionals misc Switches misc Density functional theory misc Topology misc Mathematical analysis misc Potential energy misc Dispersion Relevance of the DFT method to study expanded porphyrins with different topologies |
authorStr |
Torrent‐Sucarrat, Miquel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129860301 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0192-8651 |
topic_title |
540 DE-600 VA 5105 AVZ rvk 35.05 bkl Relevance of the DFT method to study expanded porphyrins with different topologies DLPNO‐CCSD(T) aromaticity Möbius spurious stationary points Hückel expanded porphyrin density functional theory methods Porphyrins Aromatic compounds Functionals Switches Density functional theory Topology Mathematical analysis Potential energy Dispersion |
topic |
ddc 540 rvk VA 5105 bkl 35.05 misc DLPNO‐CCSD(T) misc aromaticity misc Möbius misc spurious stationary points misc Hückel misc expanded porphyrin misc density functional theory methods misc Porphyrins misc Aromatic compounds misc Functionals misc Switches misc Density functional theory misc Topology misc Mathematical analysis misc Potential energy misc Dispersion |
topic_unstemmed |
ddc 540 rvk VA 5105 bkl 35.05 misc DLPNO‐CCSD(T) misc aromaticity misc Möbius misc spurious stationary points misc Hückel misc expanded porphyrin misc density functional theory methods misc Porphyrins misc Aromatic compounds misc Functionals misc Switches misc Density functional theory misc Topology misc Mathematical analysis misc Potential energy misc Dispersion |
topic_browse |
ddc 540 rvk VA 5105 bkl 35.05 misc DLPNO‐CCSD(T) misc aromaticity misc Möbius misc spurious stationary points misc Hückel misc expanded porphyrin misc density functional theory methods misc Porphyrins misc Aromatic compounds misc Functionals misc Switches misc Density functional theory misc Topology misc Mathematical analysis misc Potential energy misc Dispersion |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s n sn f p c fp fpc j m a jm jma j m l jm jml |
hierarchy_parent_title |
Journal of computational chemistry |
hierarchy_parent_id |
129860301 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of computational chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 |
title |
Relevance of the DFT method to study expanded porphyrins with different topologies |
ctrlnum |
(DE-627)OLC1999188454 (DE-599)GBVOLC1999188454 (PRQ)p1334-8d267ea7af640fe62734b7ee558dd91334fbfe2c08e924ed467a28ca08da9f463 (KEY)0100255420170000038003202819relevanceofthedftmethodtostudyexpandedporphyrinswi |
title_full |
Relevance of the DFT method to study expanded porphyrins with different topologies |
author_sort |
Torrent‐Sucarrat, Miquel |
journal |
Journal of computational chemistry |
journalStr |
Journal of computational chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2819 |
author_browse |
Torrent‐Sucarrat, Miquel |
container_volume |
38 |
class |
540 DE-600 VA 5105 AVZ rvk 35.05 bkl |
format_se |
Aufsätze |
author-letter |
Torrent‐Sucarrat, Miquel |
doi_str_mv |
10.1002/jcc.25074 |
dewey-full |
540 |
title_sort |
relevance of the dft method to study expanded porphyrins with different topologies |
title_auth |
Relevance of the DFT method to study expanded porphyrins with different topologies |
abstract |
Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals. |
abstractGer |
Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals. |
abstract_unstemmed |
Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 |
container_issue |
32 |
title_short |
Relevance of the DFT method to study expanded porphyrins with different topologies |
url |
http://dx.doi.org/10.1002/jcc.25074 http://onlinelibrary.wiley.com/doi/10.1002/jcc.25074/abstract https://search.proquest.com/docview/1956366947 |
remote_bool |
false |
author2 |
Navarro, Sara Cossío, Fernando P Anglada, Josep M Luis, Josep M |
author2Str |
Navarro, Sara Cossío, Fernando P Anglada, Josep M Luis, Josep M |
ppnlink |
129860301 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1002/jcc.25074 |
up_date |
2024-07-04T06:33:28.455Z |
_version_ |
1803629162344218624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999188454</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508065954.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/jcc.25074</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999188454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999188454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1334-8d267ea7af640fe62734b7ee558dd91334fbfe2c08e924ed467a28ca08da9f463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0100255420170000038003202819relevanceofthedftmethodtostudyexpandedporphyrinswi</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5105</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Torrent‐Sucarrat, Miquel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relevance of the DFT method to study expanded porphyrins with different topologies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Meso‐aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]‐heptaphyrin and [26]‐hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO‐CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3‐Grimme's dispersion correction with Becke–Johnson damping. Our results let us to conclude that the CAM‐B3LYP, M05‐2X, and M06‐2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. The selection of the density functional method has a critical role on the geometric, energetic, and magnetic results of the expanded porphyrins. As illustrative examples, we study two challenging distortions using 11 dispersion‐corrected and –uncorrected DFT functionals and performing DLPNO‐CCSD(T) single‐point calculations for benchmarking purposes. The methodologies that present the worst description of these topological distortions are the B3LYP, PBE, BP86, WB97XD, and TPSSh functionals. B3LYP is the most used functional in previous studies of the Hückel–Möbius conformational switches. An intermediate performance is obtained from the BMK, M06L, and BH&HLYP methods. The methodologies that show a more consistent behavior with respect to the DLPNO‐CCSD(T) results are the CAM‐B3LYP, M05‐2X, and M06‐2X functionals.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Wiley Periodicals, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DLPNO‐CCSD(T)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aromaticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Möbius</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spurious stationary points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hückel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">expanded porphyrin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">density functional theory methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porphyrins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aromatic compounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functionals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switches</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density functional theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dispersion</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Navarro, Sara</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cossío, Fernando P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anglada, Josep M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luis, Josep M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational chemistry</subfield><subfield code="d">New York, NY : Wiley, 1980</subfield><subfield code="g">38(2017), 32, Seite 2819-2828</subfield><subfield code="w">(DE-627)129860301</subfield><subfield code="w">(DE-600)282917-4</subfield><subfield code="w">(DE-576)015169324</subfield><subfield code="x">0192-8651</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:32</subfield><subfield code="g">pages:2819-2828</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/jcc.25074</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/jcc.25074/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1956366947</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5105</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.05</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2017</subfield><subfield code="e">32</subfield><subfield code="h">2819-2828</subfield></datafield></record></collection>
|
score |
7.4017096 |