Multifunctional carbon nanotube coatings used as strain sensors for composite tanks
The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes...
Ausführliche Beschreibung
Autor*in: |
Trigwell, Steve [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Taylor & Francis 2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Particulate science and technology - Washington, DC : Hemisphere Publ. Co., 1983, 35(2017), 6, Seite 674-8 |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2017 ; number:6 ; pages:674-8 |
Links: |
---|
DOI / URN: |
10.1080/02726351.2016.1194346 |
---|
Katalog-ID: |
OLC1999256794 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1999256794 | ||
003 | DE-627 | ||
005 | 20230518183059.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/02726351.2016.1194346 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1999256794 | ||
035 | |a (DE-599)GBVOLC1999256794 | ||
035 | |a (PRQ)c1957-7bf1792995ca9cb898a6c973f17fe28ac94beef1f0eb0f69993c416106c12afa0 | ||
035 | |a (KEY)0118898420170000035000600674multifunctionalcarbonnanotubecoatingsusedasstrains | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q ZDB |
084 | |a 50.35 |2 bkl | ||
100 | 1 | |a Trigwell, Steve |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multifunctional carbon nanotube coatings used as strain sensors for composite tanks |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors. | ||
540 | |a Nutzungsrecht: © 2017 Taylor & Francis 2017 | ||
650 | 4 | |a Carbon nanotubes | |
650 | 4 | |a composite tanks | |
650 | 4 | |a coatings | |
650 | 4 | |a structural integrity | |
650 | 4 | |a strain sensors | |
650 | 4 | |a Carbon | |
650 | 4 | |a Sensors | |
650 | 4 | |a Bowing | |
650 | 4 | |a Nanotubes | |
650 | 4 | |a Fiber composites | |
650 | 4 | |a Carbon fiber reinforced plastics | |
650 | 4 | |a Low level | |
700 | 1 | |a Dervishi, Enkeleda |4 oth | |
700 | 1 | |a Biris, Alexandru S |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Particulate science and technology |d Washington, DC : Hemisphere Publ. Co., 1983 |g 35(2017), 6, Seite 674-8 |w (DE-627)129151335 |w (DE-600)48736-3 |w (DE-576)022516255 |x 0272-6351 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2017 |g number:6 |g pages:674-8 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/02726351.2016.1194346 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/02726351.2016.1194346 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1969945642 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 50.35 |q AVZ |
951 | |a AR | ||
952 | |d 35 |j 2017 |e 6 |h 674-8 |
author_variant |
s t st |
---|---|
matchkey_str |
article:02726351:2017----::utfntoacronntbcaigueasrisno |
hierarchy_sort_str |
2017 |
bklnumber |
50.35 |
publishDate |
2017 |
allfields |
10.1080/02726351.2016.1194346 doi PQ20171228 (DE-627)OLC1999256794 (DE-599)GBVOLC1999256794 (PRQ)c1957-7bf1792995ca9cb898a6c973f17fe28ac94beef1f0eb0f69993c416106c12afa0 (KEY)0118898420170000035000600674multifunctionalcarbonnanotubecoatingsusedasstrains DE-627 ger DE-627 rakwb eng 600 ZDB 50.35 bkl Trigwell, Steve verfasserin aut Multifunctional carbon nanotube coatings used as strain sensors for composite tanks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors. Nutzungsrecht: © 2017 Taylor & Francis 2017 Carbon nanotubes composite tanks coatings structural integrity strain sensors Carbon Sensors Bowing Nanotubes Fiber composites Carbon fiber reinforced plastics Low level Dervishi, Enkeleda oth Biris, Alexandru S oth Enthalten in Particulate science and technology Washington, DC : Hemisphere Publ. Co., 1983 35(2017), 6, Seite 674-8 (DE-627)129151335 (DE-600)48736-3 (DE-576)022516255 0272-6351 nnns volume:35 year:2017 number:6 pages:674-8 http://dx.doi.org/10.1080/02726351.2016.1194346 Volltext http://www.tandfonline.com/doi/abs/10.1080/02726351.2016.1194346 https://search.proquest.com/docview/1969945642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 50.35 AVZ AR 35 2017 6 674-8 |
spelling |
10.1080/02726351.2016.1194346 doi PQ20171228 (DE-627)OLC1999256794 (DE-599)GBVOLC1999256794 (PRQ)c1957-7bf1792995ca9cb898a6c973f17fe28ac94beef1f0eb0f69993c416106c12afa0 (KEY)0118898420170000035000600674multifunctionalcarbonnanotubecoatingsusedasstrains DE-627 ger DE-627 rakwb eng 600 ZDB 50.35 bkl Trigwell, Steve verfasserin aut Multifunctional carbon nanotube coatings used as strain sensors for composite tanks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors. Nutzungsrecht: © 2017 Taylor & Francis 2017 Carbon nanotubes composite tanks coatings structural integrity strain sensors Carbon Sensors Bowing Nanotubes Fiber composites Carbon fiber reinforced plastics Low level Dervishi, Enkeleda oth Biris, Alexandru S oth Enthalten in Particulate science and technology Washington, DC : Hemisphere Publ. Co., 1983 35(2017), 6, Seite 674-8 (DE-627)129151335 (DE-600)48736-3 (DE-576)022516255 0272-6351 nnns volume:35 year:2017 number:6 pages:674-8 http://dx.doi.org/10.1080/02726351.2016.1194346 Volltext http://www.tandfonline.com/doi/abs/10.1080/02726351.2016.1194346 https://search.proquest.com/docview/1969945642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 50.35 AVZ AR 35 2017 6 674-8 |
allfields_unstemmed |
10.1080/02726351.2016.1194346 doi PQ20171228 (DE-627)OLC1999256794 (DE-599)GBVOLC1999256794 (PRQ)c1957-7bf1792995ca9cb898a6c973f17fe28ac94beef1f0eb0f69993c416106c12afa0 (KEY)0118898420170000035000600674multifunctionalcarbonnanotubecoatingsusedasstrains DE-627 ger DE-627 rakwb eng 600 ZDB 50.35 bkl Trigwell, Steve verfasserin aut Multifunctional carbon nanotube coatings used as strain sensors for composite tanks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors. Nutzungsrecht: © 2017 Taylor & Francis 2017 Carbon nanotubes composite tanks coatings structural integrity strain sensors Carbon Sensors Bowing Nanotubes Fiber composites Carbon fiber reinforced plastics Low level Dervishi, Enkeleda oth Biris, Alexandru S oth Enthalten in Particulate science and technology Washington, DC : Hemisphere Publ. Co., 1983 35(2017), 6, Seite 674-8 (DE-627)129151335 (DE-600)48736-3 (DE-576)022516255 0272-6351 nnns volume:35 year:2017 number:6 pages:674-8 http://dx.doi.org/10.1080/02726351.2016.1194346 Volltext http://www.tandfonline.com/doi/abs/10.1080/02726351.2016.1194346 https://search.proquest.com/docview/1969945642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 50.35 AVZ AR 35 2017 6 674-8 |
allfieldsGer |
10.1080/02726351.2016.1194346 doi PQ20171228 (DE-627)OLC1999256794 (DE-599)GBVOLC1999256794 (PRQ)c1957-7bf1792995ca9cb898a6c973f17fe28ac94beef1f0eb0f69993c416106c12afa0 (KEY)0118898420170000035000600674multifunctionalcarbonnanotubecoatingsusedasstrains DE-627 ger DE-627 rakwb eng 600 ZDB 50.35 bkl Trigwell, Steve verfasserin aut Multifunctional carbon nanotube coatings used as strain sensors for composite tanks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors. Nutzungsrecht: © 2017 Taylor & Francis 2017 Carbon nanotubes composite tanks coatings structural integrity strain sensors Carbon Sensors Bowing Nanotubes Fiber composites Carbon fiber reinforced plastics Low level Dervishi, Enkeleda oth Biris, Alexandru S oth Enthalten in Particulate science and technology Washington, DC : Hemisphere Publ. Co., 1983 35(2017), 6, Seite 674-8 (DE-627)129151335 (DE-600)48736-3 (DE-576)022516255 0272-6351 nnns volume:35 year:2017 number:6 pages:674-8 http://dx.doi.org/10.1080/02726351.2016.1194346 Volltext http://www.tandfonline.com/doi/abs/10.1080/02726351.2016.1194346 https://search.proquest.com/docview/1969945642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 50.35 AVZ AR 35 2017 6 674-8 |
allfieldsSound |
10.1080/02726351.2016.1194346 doi PQ20171228 (DE-627)OLC1999256794 (DE-599)GBVOLC1999256794 (PRQ)c1957-7bf1792995ca9cb898a6c973f17fe28ac94beef1f0eb0f69993c416106c12afa0 (KEY)0118898420170000035000600674multifunctionalcarbonnanotubecoatingsusedasstrains DE-627 ger DE-627 rakwb eng 600 ZDB 50.35 bkl Trigwell, Steve verfasserin aut Multifunctional carbon nanotube coatings used as strain sensors for composite tanks 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors. Nutzungsrecht: © 2017 Taylor & Francis 2017 Carbon nanotubes composite tanks coatings structural integrity strain sensors Carbon Sensors Bowing Nanotubes Fiber composites Carbon fiber reinforced plastics Low level Dervishi, Enkeleda oth Biris, Alexandru S oth Enthalten in Particulate science and technology Washington, DC : Hemisphere Publ. Co., 1983 35(2017), 6, Seite 674-8 (DE-627)129151335 (DE-600)48736-3 (DE-576)022516255 0272-6351 nnns volume:35 year:2017 number:6 pages:674-8 http://dx.doi.org/10.1080/02726351.2016.1194346 Volltext http://www.tandfonline.com/doi/abs/10.1080/02726351.2016.1194346 https://search.proquest.com/docview/1969945642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 50.35 AVZ AR 35 2017 6 674-8 |
language |
English |
source |
Enthalten in Particulate science and technology 35(2017), 6, Seite 674-8 volume:35 year:2017 number:6 pages:674-8 |
sourceStr |
Enthalten in Particulate science and technology 35(2017), 6, Seite 674-8 volume:35 year:2017 number:6 pages:674-8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbon nanotubes composite tanks coatings structural integrity strain sensors Carbon Sensors Bowing Nanotubes Fiber composites Carbon fiber reinforced plastics Low level |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Particulate science and technology |
authorswithroles_txt_mv |
Trigwell, Steve @@aut@@ Dervishi, Enkeleda @@oth@@ Biris, Alexandru S @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129151335 |
dewey-sort |
3600 |
id |
OLC1999256794 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999256794</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518183059.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02726351.2016.1194346</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999256794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999256794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1957-7bf1792995ca9cb898a6c973f17fe28ac94beef1f0eb0f69993c416106c12afa0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0118898420170000035000600674multifunctionalcarbonnanotubecoatingsusedasstrains</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trigwell, Steve</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multifunctional carbon nanotube coatings used as strain sensors for composite tanks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Taylor & Francis 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite tanks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coatings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structural integrity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strain sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bowing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon fiber reinforced plastics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low level</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dervishi, Enkeleda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biris, Alexandru S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Particulate science and technology</subfield><subfield code="d">Washington, DC : Hemisphere Publ. Co., 1983</subfield><subfield code="g">35(2017), 6, Seite 674-8</subfield><subfield code="w">(DE-627)129151335</subfield><subfield code="w">(DE-600)48736-3</subfield><subfield code="w">(DE-576)022516255</subfield><subfield code="x">0272-6351</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:674-8</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02726351.2016.1194346</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02726351.2016.1194346</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1969945642</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">674-8</subfield></datafield></record></collection>
|
author |
Trigwell, Steve |
spellingShingle |
Trigwell, Steve ddc 600 bkl 50.35 misc Carbon nanotubes misc composite tanks misc coatings misc structural integrity misc strain sensors misc Carbon misc Sensors misc Bowing misc Nanotubes misc Fiber composites misc Carbon fiber reinforced plastics misc Low level Multifunctional carbon nanotube coatings used as strain sensors for composite tanks |
authorStr |
Trigwell, Steve |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129151335 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0272-6351 |
topic_title |
600 ZDB 50.35 bkl Multifunctional carbon nanotube coatings used as strain sensors for composite tanks Carbon nanotubes composite tanks coatings structural integrity strain sensors Carbon Sensors Bowing Nanotubes Fiber composites Carbon fiber reinforced plastics Low level |
topic |
ddc 600 bkl 50.35 misc Carbon nanotubes misc composite tanks misc coatings misc structural integrity misc strain sensors misc Carbon misc Sensors misc Bowing misc Nanotubes misc Fiber composites misc Carbon fiber reinforced plastics misc Low level |
topic_unstemmed |
ddc 600 bkl 50.35 misc Carbon nanotubes misc composite tanks misc coatings misc structural integrity misc strain sensors misc Carbon misc Sensors misc Bowing misc Nanotubes misc Fiber composites misc Carbon fiber reinforced plastics misc Low level |
topic_browse |
ddc 600 bkl 50.35 misc Carbon nanotubes misc composite tanks misc coatings misc structural integrity misc strain sensors misc Carbon misc Sensors misc Bowing misc Nanotubes misc Fiber composites misc Carbon fiber reinforced plastics misc Low level |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
e d ed a s b as asb |
hierarchy_parent_title |
Particulate science and technology |
hierarchy_parent_id |
129151335 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Particulate science and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129151335 (DE-600)48736-3 (DE-576)022516255 |
title |
Multifunctional carbon nanotube coatings used as strain sensors for composite tanks |
ctrlnum |
(DE-627)OLC1999256794 (DE-599)GBVOLC1999256794 (PRQ)c1957-7bf1792995ca9cb898a6c973f17fe28ac94beef1f0eb0f69993c416106c12afa0 (KEY)0118898420170000035000600674multifunctionalcarbonnanotubecoatingsusedasstrains |
title_full |
Multifunctional carbon nanotube coatings used as strain sensors for composite tanks |
author_sort |
Trigwell, Steve |
journal |
Particulate science and technology |
journalStr |
Particulate science and technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
674 |
author_browse |
Trigwell, Steve |
container_volume |
35 |
class |
600 ZDB 50.35 bkl |
format_se |
Aufsätze |
author-letter |
Trigwell, Steve |
doi_str_mv |
10.1080/02726351.2016.1194346 |
dewey-full |
600 |
title_sort |
multifunctional carbon nanotube coatings used as strain sensors for composite tanks |
title_auth |
Multifunctional carbon nanotube coatings used as strain sensors for composite tanks |
abstract |
The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors. |
abstractGer |
The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors. |
abstract_unstemmed |
The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
6 |
title_short |
Multifunctional carbon nanotube coatings used as strain sensors for composite tanks |
url |
http://dx.doi.org/10.1080/02726351.2016.1194346 http://www.tandfonline.com/doi/abs/10.1080/02726351.2016.1194346 https://search.proquest.com/docview/1969945642 |
remote_bool |
false |
author2 |
Dervishi, Enkeleda Biris, Alexandru S |
author2Str |
Dervishi, Enkeleda Biris, Alexandru S |
ppnlink |
129151335 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1080/02726351.2016.1194346 |
up_date |
2024-07-03T13:30:51.871Z |
_version_ |
1803564825309085696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999256794</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518183059.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02726351.2016.1194346</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999256794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999256794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1957-7bf1792995ca9cb898a6c973f17fe28ac94beef1f0eb0f69993c416106c12afa0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0118898420170000035000600674multifunctionalcarbonnanotubecoatingsusedasstrains</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trigwell, Steve</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multifunctional carbon nanotube coatings used as strain sensors for composite tanks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Taylor & Francis 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite tanks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coatings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structural integrity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strain sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bowing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon fiber reinforced plastics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low level</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dervishi, Enkeleda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biris, Alexandru S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Particulate science and technology</subfield><subfield code="d">Washington, DC : Hemisphere Publ. Co., 1983</subfield><subfield code="g">35(2017), 6, Seite 674-8</subfield><subfield code="w">(DE-627)129151335</subfield><subfield code="w">(DE-600)48736-3</subfield><subfield code="w">(DE-576)022516255</subfield><subfield code="x">0272-6351</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:674-8</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02726351.2016.1194346</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02726351.2016.1194346</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1969945642</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">674-8</subfield></datafield></record></collection>
|
score |
7.40102 |