Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater
We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widen...
Ausführliche Beschreibung
Autor*in: |
Lee, Jong-Moo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
wavelength division multiplexing |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of lightwave technology - New York, NY : IEEE, 1983, 35(2017), 22, Seite 4903-4909 |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2017 ; number:22 ; pages:4903-4909 |
Links: |
---|
DOI / URN: |
10.1109/JLT.2017.2763244 |
---|
Katalog-ID: |
OLC1999276531 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1999276531 | ||
003 | DE-627 | ||
005 | 20230715083949.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JLT.2017.2763244 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1999276531 | ||
035 | |a (DE-599)GBVOLC1999276531 | ||
035 | |a (PRQ)i942-c1d5f3edf006c9c0df312b923be690fc4cb3aa19317120eb5dce2ad6e0ed0a1e0 | ||
035 | |a (KEY)0124889820170000035002204903demonstrationandfabricationtolerancestudyoftempera | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 600 |a 620 |q DE-600 |
100 | 1 | |a Lee, Jong-Moo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application. | ||
650 | 4 | |a Optical waveguides | |
650 | 4 | |a wavelength division multiplexing | |
650 | 4 | |a Indexes | |
650 | 4 | |a Silicon | |
650 | 4 | |a Temperature measurement | |
650 | 4 | |a optical components | |
650 | 4 | |a Heating systems | |
650 | 4 | |a optical planar waveguides | |
650 | 4 | |a optical planar waveguide components | |
650 | 4 | |a Optical device fabrication | |
650 | 4 | |a Integrated optoelectronics | |
700 | 1 | |a Kim, Min-Su |4 oth | |
700 | 1 | |a Ahn, Joon Tae |4 oth | |
700 | 1 | |a Adelmini, Laetitia |4 oth | |
700 | 1 | |a Fowler, Daivid |4 oth | |
700 | 1 | |a Kopp, Christophe |4 oth | |
700 | 1 | |a Oton, Claudio J |4 oth | |
700 | 1 | |a Testa, Francesco |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of lightwave technology |d New York, NY : IEEE, 1983 |g 35(2017), 22, Seite 4903-4909 |w (DE-627)129620882 |w (DE-600)246121-3 |w (DE-576)015127214 |x 0733-8724 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2017 |g number:22 |g pages:4903-4909 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JLT.2017.2763244 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/8068186 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_185 | ||
951 | |a AR | ||
952 | |d 35 |j 2017 |e 22 |h 4903-4909 |
author_variant |
j m l jml |
---|---|
matchkey_str |
article:07338724:2017----::eosrtoadarctotlrnetdotmeauenestvslcnhtn |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/JLT.2017.2763244 doi PQ20171228 (DE-627)OLC1999276531 (DE-599)GBVOLC1999276531 (PRQ)i942-c1d5f3edf006c9c0df312b923be690fc4cb3aa19317120eb5dce2ad6e0ed0a1e0 (KEY)0124889820170000035002204903demonstrationandfabricationtolerancestudyoftempera DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Lee, Jong-Moo verfasserin aut Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application. Optical waveguides wavelength division multiplexing Indexes Silicon Temperature measurement optical components Heating systems optical planar waveguides optical planar waveguide components Optical device fabrication Integrated optoelectronics Kim, Min-Su oth Ahn, Joon Tae oth Adelmini, Laetitia oth Fowler, Daivid oth Kopp, Christophe oth Oton, Claudio J oth Testa, Francesco oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 22, Seite 4903-4909 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:22 pages:4903-4909 http://dx.doi.org/10.1109/JLT.2017.2763244 Volltext http://ieeexplore.ieee.org/document/8068186 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 22 4903-4909 |
spelling |
10.1109/JLT.2017.2763244 doi PQ20171228 (DE-627)OLC1999276531 (DE-599)GBVOLC1999276531 (PRQ)i942-c1d5f3edf006c9c0df312b923be690fc4cb3aa19317120eb5dce2ad6e0ed0a1e0 (KEY)0124889820170000035002204903demonstrationandfabricationtolerancestudyoftempera DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Lee, Jong-Moo verfasserin aut Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application. Optical waveguides wavelength division multiplexing Indexes Silicon Temperature measurement optical components Heating systems optical planar waveguides optical planar waveguide components Optical device fabrication Integrated optoelectronics Kim, Min-Su oth Ahn, Joon Tae oth Adelmini, Laetitia oth Fowler, Daivid oth Kopp, Christophe oth Oton, Claudio J oth Testa, Francesco oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 22, Seite 4903-4909 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:22 pages:4903-4909 http://dx.doi.org/10.1109/JLT.2017.2763244 Volltext http://ieeexplore.ieee.org/document/8068186 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 22 4903-4909 |
allfields_unstemmed |
10.1109/JLT.2017.2763244 doi PQ20171228 (DE-627)OLC1999276531 (DE-599)GBVOLC1999276531 (PRQ)i942-c1d5f3edf006c9c0df312b923be690fc4cb3aa19317120eb5dce2ad6e0ed0a1e0 (KEY)0124889820170000035002204903demonstrationandfabricationtolerancestudyoftempera DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Lee, Jong-Moo verfasserin aut Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application. Optical waveguides wavelength division multiplexing Indexes Silicon Temperature measurement optical components Heating systems optical planar waveguides optical planar waveguide components Optical device fabrication Integrated optoelectronics Kim, Min-Su oth Ahn, Joon Tae oth Adelmini, Laetitia oth Fowler, Daivid oth Kopp, Christophe oth Oton, Claudio J oth Testa, Francesco oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 22, Seite 4903-4909 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:22 pages:4903-4909 http://dx.doi.org/10.1109/JLT.2017.2763244 Volltext http://ieeexplore.ieee.org/document/8068186 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 22 4903-4909 |
allfieldsGer |
10.1109/JLT.2017.2763244 doi PQ20171228 (DE-627)OLC1999276531 (DE-599)GBVOLC1999276531 (PRQ)i942-c1d5f3edf006c9c0df312b923be690fc4cb3aa19317120eb5dce2ad6e0ed0a1e0 (KEY)0124889820170000035002204903demonstrationandfabricationtolerancestudyoftempera DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Lee, Jong-Moo verfasserin aut Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application. Optical waveguides wavelength division multiplexing Indexes Silicon Temperature measurement optical components Heating systems optical planar waveguides optical planar waveguide components Optical device fabrication Integrated optoelectronics Kim, Min-Su oth Ahn, Joon Tae oth Adelmini, Laetitia oth Fowler, Daivid oth Kopp, Christophe oth Oton, Claudio J oth Testa, Francesco oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 22, Seite 4903-4909 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:22 pages:4903-4909 http://dx.doi.org/10.1109/JLT.2017.2763244 Volltext http://ieeexplore.ieee.org/document/8068186 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 22 4903-4909 |
allfieldsSound |
10.1109/JLT.2017.2763244 doi PQ20171228 (DE-627)OLC1999276531 (DE-599)GBVOLC1999276531 (PRQ)i942-c1d5f3edf006c9c0df312b923be690fc4cb3aa19317120eb5dce2ad6e0ed0a1e0 (KEY)0124889820170000035002204903demonstrationandfabricationtolerancestudyoftempera DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Lee, Jong-Moo verfasserin aut Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application. Optical waveguides wavelength division multiplexing Indexes Silicon Temperature measurement optical components Heating systems optical planar waveguides optical planar waveguide components Optical device fabrication Integrated optoelectronics Kim, Min-Su oth Ahn, Joon Tae oth Adelmini, Laetitia oth Fowler, Daivid oth Kopp, Christophe oth Oton, Claudio J oth Testa, Francesco oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 35(2017), 22, Seite 4903-4909 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:35 year:2017 number:22 pages:4903-4909 http://dx.doi.org/10.1109/JLT.2017.2763244 Volltext http://ieeexplore.ieee.org/document/8068186 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 35 2017 22 4903-4909 |
language |
English |
source |
Enthalten in Journal of lightwave technology 35(2017), 22, Seite 4903-4909 volume:35 year:2017 number:22 pages:4903-4909 |
sourceStr |
Enthalten in Journal of lightwave technology 35(2017), 22, Seite 4903-4909 volume:35 year:2017 number:22 pages:4903-4909 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optical waveguides wavelength division multiplexing Indexes Silicon Temperature measurement optical components Heating systems optical planar waveguides optical planar waveguide components Optical device fabrication Integrated optoelectronics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of lightwave technology |
authorswithroles_txt_mv |
Lee, Jong-Moo @@aut@@ Kim, Min-Su @@oth@@ Ahn, Joon Tae @@oth@@ Adelmini, Laetitia @@oth@@ Fowler, Daivid @@oth@@ Kopp, Christophe @@oth@@ Oton, Claudio J @@oth@@ Testa, Francesco @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129620882 |
dewey-sort |
3530 |
id |
OLC1999276531 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999276531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715083949.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2017.2763244</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999276531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999276531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i942-c1d5f3edf006c9c0df312b923be690fc4cb3aa19317120eb5dce2ad6e0ed0a1e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820170000035002204903demonstrationandfabricationtolerancestudyoftempera</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Jong-Moo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wavelength division multiplexing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical components</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heating systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical planar waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical planar waveguide components</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical device fabrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated optoelectronics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Min-Su</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahn, Joon Tae</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adelmini, Laetitia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fowler, Daivid</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kopp, Christophe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oton, Claudio J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Testa, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">35(2017), 22, Seite 4903-4909</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:22</subfield><subfield code="g">pages:4903-4909</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2017.2763244</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/8068186</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2017</subfield><subfield code="e">22</subfield><subfield code="h">4903-4909</subfield></datafield></record></collection>
|
author |
Lee, Jong-Moo |
spellingShingle |
Lee, Jong-Moo ddc 530 misc Optical waveguides misc wavelength division multiplexing misc Indexes misc Silicon misc Temperature measurement misc optical components misc Heating systems misc optical planar waveguides misc optical planar waveguide components misc Optical device fabrication misc Integrated optoelectronics Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater |
authorStr |
Lee, Jong-Moo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129620882 |
format |
Article |
dewey-ones |
530 - Physics 600 - Technology 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0733-8724 |
topic_title |
530 600 620 DE-600 Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater Optical waveguides wavelength division multiplexing Indexes Silicon Temperature measurement optical components Heating systems optical planar waveguides optical planar waveguide components Optical device fabrication Integrated optoelectronics |
topic |
ddc 530 misc Optical waveguides misc wavelength division multiplexing misc Indexes misc Silicon misc Temperature measurement misc optical components misc Heating systems misc optical planar waveguides misc optical planar waveguide components misc Optical device fabrication misc Integrated optoelectronics |
topic_unstemmed |
ddc 530 misc Optical waveguides misc wavelength division multiplexing misc Indexes misc Silicon misc Temperature measurement misc optical components misc Heating systems misc optical planar waveguides misc optical planar waveguide components misc Optical device fabrication misc Integrated optoelectronics |
topic_browse |
ddc 530 misc Optical waveguides misc wavelength division multiplexing misc Indexes misc Silicon misc Temperature measurement misc optical components misc Heating systems misc optical planar waveguides misc optical planar waveguide components misc Optical device fabrication misc Integrated optoelectronics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m s k msk j t a jt jta l a la d f df c k ck c j o cj cjo f t ft |
hierarchy_parent_title |
Journal of lightwave technology |
hierarchy_parent_id |
129620882 |
dewey-tens |
530 - Physics 600 - Technology 620 - Engineering |
hierarchy_top_title |
Journal of lightwave technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 |
title |
Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater |
ctrlnum |
(DE-627)OLC1999276531 (DE-599)GBVOLC1999276531 (PRQ)i942-c1d5f3edf006c9c0df312b923be690fc4cb3aa19317120eb5dce2ad6e0ed0a1e0 (KEY)0124889820170000035002204903demonstrationandfabricationtolerancestudyoftempera |
title_full |
Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater |
author_sort |
Lee, Jong-Moo |
journal |
Journal of lightwave technology |
journalStr |
Journal of lightwave technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
4903 |
author_browse |
Lee, Jong-Moo |
container_volume |
35 |
class |
530 600 620 DE-600 |
format_se |
Aufsätze |
author-letter |
Lee, Jong-Moo |
doi_str_mv |
10.1109/JLT.2017.2763244 |
dewey-full |
530 600 620 |
title_sort |
demonstration and fabrication tolerance study of temperature-insensitive silicon-photonic mzi tunable by a metal heater |
title_auth |
Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater |
abstract |
We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application. |
abstractGer |
We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application. |
abstract_unstemmed |
We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 |
container_issue |
22 |
title_short |
Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater |
url |
http://dx.doi.org/10.1109/JLT.2017.2763244 http://ieeexplore.ieee.org/document/8068186 |
remote_bool |
false |
author2 |
Kim, Min-Su Ahn, Joon Tae Adelmini, Laetitia Fowler, Daivid Kopp, Christophe Oton, Claudio J Testa, Francesco |
author2Str |
Kim, Min-Su Ahn, Joon Tae Adelmini, Laetitia Fowler, Daivid Kopp, Christophe Oton, Claudio J Testa, Francesco |
ppnlink |
129620882 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1109/JLT.2017.2763244 |
up_date |
2024-07-03T13:36:26.553Z |
_version_ |
1803565176250695680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999276531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715083949.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2017.2763244</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999276531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999276531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i942-c1d5f3edf006c9c0df312b923be690fc4cb3aa19317120eb5dce2ad6e0ed0a1e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820170000035002204903demonstrationandfabricationtolerancestudyoftempera</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Jong-Moo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Demonstration and Fabrication Tolerance Study of Temperature-Insensitive Silicon-Photonic MZI Tunable by a Metal Heater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a temperature-insensitive tunable silicon-photonic Mach-Zehnder interferometer (MZI) filter fabricated by deep ultraviolet lithography. The wavelength shift of the MZI filter depending on temperature is reduced down to −4 pm/°C at ∼1480 nm using a design with waveguide narrowing and widening, and the MZI filter is tunable with a thermal heater at an efficiency of 24 mW/free spectral range (FSR). The FSR of the MZI is about 5.8 nm, which corresponds to a channel spacing of 2.9 nm for a two-channel MZI. We discuss the fabrication tolerance of the fabricated MZI according to experimental and simulation results and show design parameters for a fabrication-tolerant temperature-insensitive MZI with a 20-nm channel spacing for coarse wavelength-division multiplexing application.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wavelength division multiplexing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical components</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heating systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical planar waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical planar waveguide components</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical device fabrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated optoelectronics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Min-Su</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahn, Joon Tae</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adelmini, Laetitia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fowler, Daivid</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kopp, Christophe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oton, Claudio J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Testa, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">35(2017), 22, Seite 4903-4909</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:22</subfield><subfield code="g">pages:4903-4909</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2017.2763244</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/8068186</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2017</subfield><subfield code="e">22</subfield><subfield code="h">4903-4909</subfield></datafield></record></collection>
|
score |
7.4012985 |