Nonparametric signed‐rank control charts with variable sampling intervals
Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample....
Ausführliche Beschreibung
Autor*in: |
Coelho, M.L.I [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Quality and reliability engineering international - Chichester [u.a.] : Wiley, 1985, 33(2017), 8, Seite 2181-2192 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2017 ; number:8 ; pages:2181-2192 |
Links: |
---|
DOI / URN: |
10.1002/qre.2177 |
---|
Katalog-ID: |
OLC1999322789 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1999322789 | ||
003 | DE-627 | ||
005 | 20220217093021.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/qre.2177 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1999322789 | ||
035 | |a (DE-599)GBVOLC1999322789 | ||
035 | |a (PRQ)p957-642e827da7efa75f2bf3ec7a9d1bb08ed4adb85c6839fa07748e4c27cec398d3 | ||
035 | |a (KEY)0136540120170000033000802181nonparametricsignedrankcontrolchartswithvariablesa | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 650 |a 690 |q DNB |
084 | |a 50.16 |2 bkl | ||
084 | |a 85.38 |2 bkl | ||
100 | 1 | |a Coelho, M.L.I |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonparametric signed‐rank control charts with variable sampling intervals |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used. | ||
540 | |a Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. | ||
650 | 4 | |a fixed sampling interval | |
650 | 4 | |a control chart | |
650 | 4 | |a distribution‐free | |
650 | 4 | |a statistical process control | |
650 | 4 | |a location | |
650 | 4 | |a Shewhart | |
650 | 4 | |a Process controls | |
650 | 4 | |a Change detection | |
650 | 4 | |a Control charts | |
650 | 4 | |a Statistical process control | |
650 | 4 | |a Process planning | |
650 | 4 | |a Economic models | |
650 | 4 | |a Statistical analysis | |
650 | 4 | |a Sampling | |
650 | 4 | |a Statistical methods | |
650 | 4 | |a Current distribution | |
650 | 4 | |a Charts | |
700 | 1 | |a Graham, M.A |4 oth | |
700 | 1 | |a Chakraborti, S |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Quality and reliability engineering international |d Chichester [u.a.] : Wiley, 1985 |g 33(2017), 8, Seite 2181-2192 |w (DE-627)129167614 |w (DE-600)50641-2 |w (DE-576)028403312 |x 0748-8017 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2017 |g number:8 |g pages:2181-2192 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/qre.2177 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/qre.2177/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1968953943 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 50.16 |q AVZ |
936 | b | k | |a 85.38 |q AVZ |
951 | |a AR | ||
952 | |d 33 |j 2017 |e 8 |h 2181-2192 |
author_variant |
m c mc |
---|---|
matchkey_str |
article:07488017:2017----::oprmtisgerncnrlhrsihaibe |
hierarchy_sort_str |
2017 |
bklnumber |
50.16 85.38 |
publishDate |
2017 |
allfields |
10.1002/qre.2177 doi PQ20171228 (DE-627)OLC1999322789 (DE-599)GBVOLC1999322789 (PRQ)p957-642e827da7efa75f2bf3ec7a9d1bb08ed4adb85c6839fa07748e4c27cec398d3 (KEY)0136540120170000033000802181nonparametricsignedrankcontrolchartswithvariablesa DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Coelho, M.L.I verfasserin aut Nonparametric signed‐rank control charts with variable sampling intervals 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. fixed sampling interval control chart distribution‐free statistical process control location Shewhart Process controls Change detection Control charts Statistical process control Process planning Economic models Statistical analysis Sampling Statistical methods Current distribution Charts Graham, M.A oth Chakraborti, S oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 33(2017), 8, Seite 2181-2192 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:33 year:2017 number:8 pages:2181-2192 http://dx.doi.org/10.1002/qre.2177 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.2177/abstract https://search.proquest.com/docview/1968953943 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 33 2017 8 2181-2192 |
spelling |
10.1002/qre.2177 doi PQ20171228 (DE-627)OLC1999322789 (DE-599)GBVOLC1999322789 (PRQ)p957-642e827da7efa75f2bf3ec7a9d1bb08ed4adb85c6839fa07748e4c27cec398d3 (KEY)0136540120170000033000802181nonparametricsignedrankcontrolchartswithvariablesa DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Coelho, M.L.I verfasserin aut Nonparametric signed‐rank control charts with variable sampling intervals 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. fixed sampling interval control chart distribution‐free statistical process control location Shewhart Process controls Change detection Control charts Statistical process control Process planning Economic models Statistical analysis Sampling Statistical methods Current distribution Charts Graham, M.A oth Chakraborti, S oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 33(2017), 8, Seite 2181-2192 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:33 year:2017 number:8 pages:2181-2192 http://dx.doi.org/10.1002/qre.2177 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.2177/abstract https://search.proquest.com/docview/1968953943 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 33 2017 8 2181-2192 |
allfields_unstemmed |
10.1002/qre.2177 doi PQ20171228 (DE-627)OLC1999322789 (DE-599)GBVOLC1999322789 (PRQ)p957-642e827da7efa75f2bf3ec7a9d1bb08ed4adb85c6839fa07748e4c27cec398d3 (KEY)0136540120170000033000802181nonparametricsignedrankcontrolchartswithvariablesa DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Coelho, M.L.I verfasserin aut Nonparametric signed‐rank control charts with variable sampling intervals 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. fixed sampling interval control chart distribution‐free statistical process control location Shewhart Process controls Change detection Control charts Statistical process control Process planning Economic models Statistical analysis Sampling Statistical methods Current distribution Charts Graham, M.A oth Chakraborti, S oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 33(2017), 8, Seite 2181-2192 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:33 year:2017 number:8 pages:2181-2192 http://dx.doi.org/10.1002/qre.2177 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.2177/abstract https://search.proquest.com/docview/1968953943 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 33 2017 8 2181-2192 |
allfieldsGer |
10.1002/qre.2177 doi PQ20171228 (DE-627)OLC1999322789 (DE-599)GBVOLC1999322789 (PRQ)p957-642e827da7efa75f2bf3ec7a9d1bb08ed4adb85c6839fa07748e4c27cec398d3 (KEY)0136540120170000033000802181nonparametricsignedrankcontrolchartswithvariablesa DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Coelho, M.L.I verfasserin aut Nonparametric signed‐rank control charts with variable sampling intervals 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. fixed sampling interval control chart distribution‐free statistical process control location Shewhart Process controls Change detection Control charts Statistical process control Process planning Economic models Statistical analysis Sampling Statistical methods Current distribution Charts Graham, M.A oth Chakraborti, S oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 33(2017), 8, Seite 2181-2192 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:33 year:2017 number:8 pages:2181-2192 http://dx.doi.org/10.1002/qre.2177 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.2177/abstract https://search.proquest.com/docview/1968953943 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 33 2017 8 2181-2192 |
allfieldsSound |
10.1002/qre.2177 doi PQ20171228 (DE-627)OLC1999322789 (DE-599)GBVOLC1999322789 (PRQ)p957-642e827da7efa75f2bf3ec7a9d1bb08ed4adb85c6839fa07748e4c27cec398d3 (KEY)0136540120170000033000802181nonparametricsignedrankcontrolchartswithvariablesa DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Coelho, M.L.I verfasserin aut Nonparametric signed‐rank control charts with variable sampling intervals 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. fixed sampling interval control chart distribution‐free statistical process control location Shewhart Process controls Change detection Control charts Statistical process control Process planning Economic models Statistical analysis Sampling Statistical methods Current distribution Charts Graham, M.A oth Chakraborti, S oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 33(2017), 8, Seite 2181-2192 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:33 year:2017 number:8 pages:2181-2192 http://dx.doi.org/10.1002/qre.2177 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.2177/abstract https://search.proquest.com/docview/1968953943 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 33 2017 8 2181-2192 |
language |
English |
source |
Enthalten in Quality and reliability engineering international 33(2017), 8, Seite 2181-2192 volume:33 year:2017 number:8 pages:2181-2192 |
sourceStr |
Enthalten in Quality and reliability engineering international 33(2017), 8, Seite 2181-2192 volume:33 year:2017 number:8 pages:2181-2192 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fixed sampling interval control chart distribution‐free statistical process control location Shewhart Process controls Change detection Control charts Statistical process control Process planning Economic models Statistical analysis Sampling Statistical methods Current distribution Charts |
dewey-raw |
650 |
isfreeaccess_bool |
false |
container_title |
Quality and reliability engineering international |
authorswithroles_txt_mv |
Coelho, M.L.I @@aut@@ Graham, M.A @@oth@@ Chakraborti, S @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129167614 |
dewey-sort |
3650 |
id |
OLC1999322789 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999322789</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217093021.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/qre.2177</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999322789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999322789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p957-642e827da7efa75f2bf3ec7a9d1bb08ed4adb85c6839fa07748e4c27cec398d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0136540120170000033000802181nonparametricsignedrankcontrolchartswithvariablesa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coelho, M.L.I</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric signed‐rank control charts with variable sampling intervals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed sampling interval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distribution‐free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical process control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">location</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shewhart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process controls</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Change detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control charts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical process control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Charts</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, M.A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborti, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quality and reliability engineering international</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1985</subfield><subfield code="g">33(2017), 8, Seite 2181-2192</subfield><subfield code="w">(DE-627)129167614</subfield><subfield code="w">(DE-600)50641-2</subfield><subfield code="w">(DE-576)028403312</subfield><subfield code="x">0748-8017</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:2181-2192</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/qre.2177</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/qre.2177/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1968953943</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">2181-2192</subfield></datafield></record></collection>
|
author |
Coelho, M.L.I |
spellingShingle |
Coelho, M.L.I ddc 650 bkl 50.16 bkl 85.38 misc fixed sampling interval misc control chart misc distribution‐free misc statistical process control misc location misc Shewhart misc Process controls misc Change detection misc Control charts misc Statistical process control misc Process planning misc Economic models misc Statistical analysis misc Sampling misc Statistical methods misc Current distribution misc Charts Nonparametric signed‐rank control charts with variable sampling intervals |
authorStr |
Coelho, M.L.I |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129167614 |
format |
Article |
dewey-ones |
650 - Management & auxiliary services 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0748-8017 |
topic_title |
650 690 DNB 50.16 bkl 85.38 bkl Nonparametric signed‐rank control charts with variable sampling intervals fixed sampling interval control chart distribution‐free statistical process control location Shewhart Process controls Change detection Control charts Statistical process control Process planning Economic models Statistical analysis Sampling Statistical methods Current distribution Charts |
topic |
ddc 650 bkl 50.16 bkl 85.38 misc fixed sampling interval misc control chart misc distribution‐free misc statistical process control misc location misc Shewhart misc Process controls misc Change detection misc Control charts misc Statistical process control misc Process planning misc Economic models misc Statistical analysis misc Sampling misc Statistical methods misc Current distribution misc Charts |
topic_unstemmed |
ddc 650 bkl 50.16 bkl 85.38 misc fixed sampling interval misc control chart misc distribution‐free misc statistical process control misc location misc Shewhart misc Process controls misc Change detection misc Control charts misc Statistical process control misc Process planning misc Economic models misc Statistical analysis misc Sampling misc Statistical methods misc Current distribution misc Charts |
topic_browse |
ddc 650 bkl 50.16 bkl 85.38 misc fixed sampling interval misc control chart misc distribution‐free misc statistical process control misc location misc Shewhart misc Process controls misc Change detection misc Control charts misc Statistical process control misc Process planning misc Economic models misc Statistical analysis misc Sampling misc Statistical methods misc Current distribution misc Charts |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m g mg s c sc |
hierarchy_parent_title |
Quality and reliability engineering international |
hierarchy_parent_id |
129167614 |
dewey-tens |
650 - Management & public relations 690 - Building & construction |
hierarchy_top_title |
Quality and reliability engineering international |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 |
title |
Nonparametric signed‐rank control charts with variable sampling intervals |
ctrlnum |
(DE-627)OLC1999322789 (DE-599)GBVOLC1999322789 (PRQ)p957-642e827da7efa75f2bf3ec7a9d1bb08ed4adb85c6839fa07748e4c27cec398d3 (KEY)0136540120170000033000802181nonparametricsignedrankcontrolchartswithvariablesa |
title_full |
Nonparametric signed‐rank control charts with variable sampling intervals |
author_sort |
Coelho, M.L.I |
journal |
Quality and reliability engineering international |
journalStr |
Quality and reliability engineering international |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2181 |
author_browse |
Coelho, M.L.I |
container_volume |
33 |
class |
650 690 DNB 50.16 bkl 85.38 bkl |
format_se |
Aufsätze |
author-letter |
Coelho, M.L.I |
doi_str_mv |
10.1002/qre.2177 |
dewey-full |
650 690 |
title_sort |
nonparametric signed‐rank control charts with variable sampling intervals |
title_auth |
Nonparametric signed‐rank control charts with variable sampling intervals |
abstract |
Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used. |
abstractGer |
Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used. |
abstract_unstemmed |
Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 |
container_issue |
8 |
title_short |
Nonparametric signed‐rank control charts with variable sampling intervals |
url |
http://dx.doi.org/10.1002/qre.2177 http://onlinelibrary.wiley.com/doi/10.1002/qre.2177/abstract https://search.proquest.com/docview/1968953943 |
remote_bool |
false |
author2 |
Graham, M.A Chakraborti, S |
author2Str |
Graham, M.A Chakraborti, S |
ppnlink |
129167614 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/qre.2177 |
up_date |
2024-07-03T13:48:18.471Z |
_version_ |
1803565922746630145 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999322789</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217093021.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/qre.2177</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999322789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999322789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p957-642e827da7efa75f2bf3ec7a9d1bb08ed4adb85c6839fa07748e4c27cec398d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0136540120170000033000802181nonparametricsignedrankcontrolchartswithvariablesa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coelho, M.L.I</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric signed‐rank control charts with variable sampling intervals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI X ¯ ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed sampling interval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distribution‐free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical process control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">location</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shewhart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process controls</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Change detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control charts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical process control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Charts</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, M.A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborti, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quality and reliability engineering international</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1985</subfield><subfield code="g">33(2017), 8, Seite 2181-2192</subfield><subfield code="w">(DE-627)129167614</subfield><subfield code="w">(DE-600)50641-2</subfield><subfield code="w">(DE-576)028403312</subfield><subfield code="x">0748-8017</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:2181-2192</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/qre.2177</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/qre.2177/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1968953943</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">2181-2192</subfield></datafield></record></collection>
|
score |
7.4024363 |