Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations
Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties...
Ausführliche Beschreibung
Autor*in: |
Tian, Y. L [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017, World Scientific Publishing Company |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Modern physics letters / B - Singapore [u.a.] : World Scientific Publ., 1987, 31(2017), 35 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2017 ; number:35 |
Links: |
---|
DOI / URN: |
10.1142/S0217984917503353 |
---|
Katalog-ID: |
OLC1999383583 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1999383583 | ||
003 | DE-627 | ||
005 | 20230715084232.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1142/S0217984917503353 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1999383583 | ||
035 | |a (DE-599)GBVOLC1999383583 | ||
035 | |a (PRQ)worldscientific_primary_S02179849175033530 | ||
035 | |a (KEY)0160451120170000031003500000adsorptionpropertiesofchloroformmoleculeongraphene | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DNB |
084 | |a UA 5534. |q AVZ |2 rvk | ||
100 | 1 | |a Tian, Y. L |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption. | ||
540 | |a Nutzungsrecht: © 2017, World Scientific Publishing Company | ||
700 | 1 | |a Hua, H. L |4 oth | |
700 | 1 | |a Yue, W. W |4 oth | |
700 | 1 | |a Chen, M. N |4 oth | |
700 | 1 | |a Hu, G. C |4 oth | |
700 | 1 | |a Ren, J. F |4 oth | |
700 | 1 | |a Yuan, X. B |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Modern physics letters / B |d Singapore [u.a.] : World Scientific Publ., 1987 |g 31(2017), 35 |w (DE-627)130684228 |w (DE-600)896450-6 |w (DE-576)016233727 |x 0217-9849 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2017 |g number:35 |
856 | 4 | 1 | |u http://dx.doi.org/10.1142/S0217984917503353 |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4126 | ||
936 | r | v | |a UA 5534. |
951 | |a AR | ||
952 | |d 31 |j 2017 |e 35 |
author_variant |
y l t yl ylt |
---|---|
matchkey_str |
article:02179849:2017----::dopinrprisfhooomoeuenrpeexeietlnfr |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1142/S0217984917503353 doi PQ20171228 (DE-627)OLC1999383583 (DE-599)GBVOLC1999383583 (PRQ)worldscientific_primary_S02179849175033530 (KEY)0160451120170000031003500000adsorptionpropertiesofchloroformmoleculeongraphene DE-627 ger DE-627 rakwb eng 530 DNB UA 5534. AVZ rvk Tian, Y. L verfasserin aut Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption. Nutzungsrecht: © 2017, World Scientific Publishing Company Hua, H. L oth Yue, W. W oth Chen, M. N oth Hu, G. C oth Ren, J. F oth Yuan, X. B oth Enthalten in Modern physics letters / B Singapore [u.a.] : World Scientific Publ., 1987 31(2017), 35 (DE-627)130684228 (DE-600)896450-6 (DE-576)016233727 0217-9849 nnns volume:31 year:2017 number:35 http://dx.doi.org/10.1142/S0217984917503353 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_32 GBV_ILN_70 GBV_ILN_4126 UA 5534. AR 31 2017 35 |
spelling |
10.1142/S0217984917503353 doi PQ20171228 (DE-627)OLC1999383583 (DE-599)GBVOLC1999383583 (PRQ)worldscientific_primary_S02179849175033530 (KEY)0160451120170000031003500000adsorptionpropertiesofchloroformmoleculeongraphene DE-627 ger DE-627 rakwb eng 530 DNB UA 5534. AVZ rvk Tian, Y. L verfasserin aut Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption. Nutzungsrecht: © 2017, World Scientific Publishing Company Hua, H. L oth Yue, W. W oth Chen, M. N oth Hu, G. C oth Ren, J. F oth Yuan, X. B oth Enthalten in Modern physics letters / B Singapore [u.a.] : World Scientific Publ., 1987 31(2017), 35 (DE-627)130684228 (DE-600)896450-6 (DE-576)016233727 0217-9849 nnns volume:31 year:2017 number:35 http://dx.doi.org/10.1142/S0217984917503353 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_32 GBV_ILN_70 GBV_ILN_4126 UA 5534. AR 31 2017 35 |
allfields_unstemmed |
10.1142/S0217984917503353 doi PQ20171228 (DE-627)OLC1999383583 (DE-599)GBVOLC1999383583 (PRQ)worldscientific_primary_S02179849175033530 (KEY)0160451120170000031003500000adsorptionpropertiesofchloroformmoleculeongraphene DE-627 ger DE-627 rakwb eng 530 DNB UA 5534. AVZ rvk Tian, Y. L verfasserin aut Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption. Nutzungsrecht: © 2017, World Scientific Publishing Company Hua, H. L oth Yue, W. W oth Chen, M. N oth Hu, G. C oth Ren, J. F oth Yuan, X. B oth Enthalten in Modern physics letters / B Singapore [u.a.] : World Scientific Publ., 1987 31(2017), 35 (DE-627)130684228 (DE-600)896450-6 (DE-576)016233727 0217-9849 nnns volume:31 year:2017 number:35 http://dx.doi.org/10.1142/S0217984917503353 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_32 GBV_ILN_70 GBV_ILN_4126 UA 5534. AR 31 2017 35 |
allfieldsGer |
10.1142/S0217984917503353 doi PQ20171228 (DE-627)OLC1999383583 (DE-599)GBVOLC1999383583 (PRQ)worldscientific_primary_S02179849175033530 (KEY)0160451120170000031003500000adsorptionpropertiesofchloroformmoleculeongraphene DE-627 ger DE-627 rakwb eng 530 DNB UA 5534. AVZ rvk Tian, Y. L verfasserin aut Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption. Nutzungsrecht: © 2017, World Scientific Publishing Company Hua, H. L oth Yue, W. W oth Chen, M. N oth Hu, G. C oth Ren, J. F oth Yuan, X. B oth Enthalten in Modern physics letters / B Singapore [u.a.] : World Scientific Publ., 1987 31(2017), 35 (DE-627)130684228 (DE-600)896450-6 (DE-576)016233727 0217-9849 nnns volume:31 year:2017 number:35 http://dx.doi.org/10.1142/S0217984917503353 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_32 GBV_ILN_70 GBV_ILN_4126 UA 5534. AR 31 2017 35 |
allfieldsSound |
10.1142/S0217984917503353 doi PQ20171228 (DE-627)OLC1999383583 (DE-599)GBVOLC1999383583 (PRQ)worldscientific_primary_S02179849175033530 (KEY)0160451120170000031003500000adsorptionpropertiesofchloroformmoleculeongraphene DE-627 ger DE-627 rakwb eng 530 DNB UA 5534. AVZ rvk Tian, Y. L verfasserin aut Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption. Nutzungsrecht: © 2017, World Scientific Publishing Company Hua, H. L oth Yue, W. W oth Chen, M. N oth Hu, G. C oth Ren, J. F oth Yuan, X. B oth Enthalten in Modern physics letters / B Singapore [u.a.] : World Scientific Publ., 1987 31(2017), 35 (DE-627)130684228 (DE-600)896450-6 (DE-576)016233727 0217-9849 nnns volume:31 year:2017 number:35 http://dx.doi.org/10.1142/S0217984917503353 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_32 GBV_ILN_70 GBV_ILN_4126 UA 5534. AR 31 2017 35 |
language |
English |
source |
Enthalten in Modern physics letters / B 31(2017), 35 volume:31 year:2017 number:35 |
sourceStr |
Enthalten in Modern physics letters / B 31(2017), 35 volume:31 year:2017 number:35 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Modern physics letters / B |
authorswithroles_txt_mv |
Tian, Y. L @@aut@@ Hua, H. L @@oth@@ Yue, W. W @@oth@@ Chen, M. N @@oth@@ Hu, G. C @@oth@@ Ren, J. F @@oth@@ Yuan, X. B @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130684228 |
dewey-sort |
3530 |
id |
OLC1999383583 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999383583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715084232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/S0217984917503353</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999383583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999383583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)worldscientific_primary_S02179849175033530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0160451120170000031003500000adsorptionpropertiesofchloroformmoleculeongraphene</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 5534.</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Y. L</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017, World Scientific Publishing Company</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, H. L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, W. W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, M. N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, G. C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, J. F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, X. B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Modern physics letters / B</subfield><subfield code="d">Singapore [u.a.] : World Scientific Publ., 1987</subfield><subfield code="g">31(2017), 35</subfield><subfield code="w">(DE-627)130684228</subfield><subfield code="w">(DE-600)896450-6</subfield><subfield code="w">(DE-576)016233727</subfield><subfield code="x">0217-9849</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1142/S0217984917503353</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 5534.</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2017</subfield><subfield code="e">35</subfield></datafield></record></collection>
|
author |
Tian, Y. L |
spellingShingle |
Tian, Y. L ddc 530 rvk UA 5534. Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations |
authorStr |
Tian, Y. L |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130684228 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0217-9849 |
topic_title |
530 DNB UA 5534. AVZ rvk Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations |
topic |
ddc 530 rvk UA 5534. |
topic_unstemmed |
ddc 530 rvk UA 5534. |
topic_browse |
ddc 530 rvk UA 5534. |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h l h hl hlh w w y ww wwy m n c mn mnc g c h gc gch j f r jf jfr x b y xb xby |
hierarchy_parent_title |
Modern physics letters / B |
hierarchy_parent_id |
130684228 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Modern physics letters / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130684228 (DE-600)896450-6 (DE-576)016233727 |
title |
Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations |
ctrlnum |
(DE-627)OLC1999383583 (DE-599)GBVOLC1999383583 (PRQ)worldscientific_primary_S02179849175033530 (KEY)0160451120170000031003500000adsorptionpropertiesofchloroformmoleculeongraphene |
title_full |
Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations |
author_sort |
Tian, Y. L |
journal |
Modern physics letters / B |
journalStr |
Modern physics letters / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Tian, Y. L |
container_volume |
31 |
class |
530 DNB UA 5534. AVZ rvk |
format_se |
Aufsätze |
author-letter |
Tian, Y. L |
doi_str_mv |
10.1142/S0217984917503353 |
dewey-full |
530 |
title_sort |
adsorption properties of chloroform molecule on graphene: experimental and first-principles calculations |
title_auth |
Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations |
abstract |
Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption. |
abstractGer |
Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption. |
abstract_unstemmed |
Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_32 GBV_ILN_70 GBV_ILN_4126 |
container_issue |
35 |
title_short |
Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations |
url |
http://dx.doi.org/10.1142/S0217984917503353 |
remote_bool |
false |
author2 |
Hua, H. L Yue, W. W Chen, M. N Hu, G. C Ren, J. F Yuan, X. B |
author2Str |
Hua, H. L Yue, W. W Chen, M. N Hu, G. C Ren, J. F Yuan, X. B |
ppnlink |
130684228 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1142/S0217984917503353 |
up_date |
2024-07-03T14:02:35.048Z |
_version_ |
1803566820937957376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999383583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715084232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/S0217984917503353</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999383583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999383583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)worldscientific_primary_S02179849175033530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0160451120170000031003500000adsorptionpropertiesofchloroformmoleculeongraphene</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 5534.</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Y. L</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adsorption properties of chloroform molecule (CHCl3) on graphene surface are studied experimentally and theoretically. Based on the density functional theory (DFT) calculations, effects of different adsorption configurations and different adsorption distances on the system’s conductivity properties are discussed, and the comparisons with the experimental results are made. It is found that band gap appears when the adsorption distance is 1.0 Å, which is about 0.32 eV near the Fermi level. However, the band gap is nearly zero when the adsorption distance is increased to 1.5 Å, so the conductivity of the system will be increased with the increasing of the adsorption distances. The density of states, the adsorption energy and the effective masses are also calculated and the analyses are consistent with the experimental results. Our results reveal that graphene could be used to build sensors or as a catalyst for molecular adsorption.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017, World Scientific Publishing Company</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, H. L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, W. W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, M. N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, G. C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, J. F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, X. B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Modern physics letters / B</subfield><subfield code="d">Singapore [u.a.] : World Scientific Publ., 1987</subfield><subfield code="g">31(2017), 35</subfield><subfield code="w">(DE-627)130684228</subfield><subfield code="w">(DE-600)896450-6</subfield><subfield code="w">(DE-576)016233727</subfield><subfield code="x">0217-9849</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1142/S0217984917503353</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 5534.</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2017</subfield><subfield code="e">35</subfield></datafield></record></collection>
|
score |
7.399311 |