Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones
In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system in...
Ausführliche Beschreibung
Autor*in: |
Wang, Rui [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
variable universe of discourse adaptive fuzzy control |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of adaptive control and signal processing - Chichester, Sussex [u.a.] : Wiley, 1987, 31(2017), 12, Seite 1934-1951 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2017 ; number:12 ; pages:1934-1951 |
Links: |
---|
DOI / URN: |
10.1002/acs.2820 |
---|
Katalog-ID: |
OLC1999394321 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1999394321 | ||
003 | DE-627 | ||
005 | 20220216064854.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/acs.2820 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1999394321 | ||
035 | |a (DE-599)GBVOLC1999394321 | ||
035 | |a (PRQ)p950-98c281b5f7491b6d7009f123c86981bb0a1c11635ab6b202d95537cf3364a2ef3 | ||
035 | |a (KEY)0163452620170000031001201934adaptivevariableuniverseofdiscoursefuzzycontrolfor | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q ZDB |
084 | |a 50.23 |2 bkl | ||
084 | |a 53.73 |2 bkl | ||
100 | 1 | |a Wang, Rui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach. | ||
540 | |a Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. | ||
650 | 4 | |a Lyapunov stability theory | |
650 | 4 | |a variable universe of discourse adaptive fuzzy control | |
650 | 4 | |a nonlinear strict‐feedback systems | |
650 | 4 | |a unknown dead zones | |
650 | 4 | |a nonbackstepping design scheme | |
650 | 4 | |a Adaptive control | |
650 | 4 | |a Coordinate transformations | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Feedback control | |
650 | 4 | |a Nonlinear systems | |
650 | 4 | |a Fuzzy control | |
650 | 4 | |a Output feedback | |
650 | 4 | |a Universe | |
650 | 4 | |a Tracking | |
650 | 4 | |a Fuzzy systems | |
650 | 4 | |a Adaptive algorithms | |
700 | 1 | |a Liu, Yan‐Jun |4 oth | |
700 | 1 | |a Yu, Fu‐Sheng |4 oth | |
700 | 1 | |a Wang, Jia‐Yin |4 oth | |
700 | 1 | |a Yang, Jin‐Lin |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of adaptive control and signal processing |d Chichester, Sussex [u.a.] : Wiley, 1987 |g 31(2017), 12, Seite 1934-1951 |w (DE-627)129242489 |w (DE-600)58715-1 |w (DE-576)018613578 |x 0890-6327 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2017 |g number:12 |g pages:1934-1951 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/acs.2820 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/acs.2820/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1974960207 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 50.23 |q AVZ |
936 | b | k | |a 53.73 |q AVZ |
951 | |a AR | ||
952 | |d 31 |j 2017 |e 12 |h 1934-1951 |
author_variant |
r w rw |
---|---|
matchkey_str |
article:08906327:2017----::dpieaibenvreficusfzyotofrcasfolnas |
hierarchy_sort_str |
2017 |
bklnumber |
50.23 53.73 |
publishDate |
2017 |
allfields |
10.1002/acs.2820 doi PQ20171228 (DE-627)OLC1999394321 (DE-599)GBVOLC1999394321 (PRQ)p950-98c281b5f7491b6d7009f123c86981bb0a1c11635ab6b202d95537cf3364a2ef3 (KEY)0163452620170000031001201934adaptivevariableuniverseofdiscoursefuzzycontrolfor DE-627 ger DE-627 rakwb eng 600 ZDB 50.23 bkl 53.73 bkl Wang, Rui verfasserin aut Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Lyapunov stability theory variable universe of discourse adaptive fuzzy control nonlinear strict‐feedback systems unknown dead zones nonbackstepping design scheme Adaptive control Coordinate transformations Computer simulation Feedback control Nonlinear systems Fuzzy control Output feedback Universe Tracking Fuzzy systems Adaptive algorithms Liu, Yan‐Jun oth Yu, Fu‐Sheng oth Wang, Jia‐Yin oth Yang, Jin‐Lin oth Enthalten in International journal of adaptive control and signal processing Chichester, Sussex [u.a.] : Wiley, 1987 31(2017), 12, Seite 1934-1951 (DE-627)129242489 (DE-600)58715-1 (DE-576)018613578 0890-6327 nnns volume:31 year:2017 number:12 pages:1934-1951 http://dx.doi.org/10.1002/acs.2820 Volltext http://onlinelibrary.wiley.com/doi/10.1002/acs.2820/abstract https://search.proquest.com/docview/1974960207 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 50.23 AVZ 53.73 AVZ AR 31 2017 12 1934-1951 |
spelling |
10.1002/acs.2820 doi PQ20171228 (DE-627)OLC1999394321 (DE-599)GBVOLC1999394321 (PRQ)p950-98c281b5f7491b6d7009f123c86981bb0a1c11635ab6b202d95537cf3364a2ef3 (KEY)0163452620170000031001201934adaptivevariableuniverseofdiscoursefuzzycontrolfor DE-627 ger DE-627 rakwb eng 600 ZDB 50.23 bkl 53.73 bkl Wang, Rui verfasserin aut Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Lyapunov stability theory variable universe of discourse adaptive fuzzy control nonlinear strict‐feedback systems unknown dead zones nonbackstepping design scheme Adaptive control Coordinate transformations Computer simulation Feedback control Nonlinear systems Fuzzy control Output feedback Universe Tracking Fuzzy systems Adaptive algorithms Liu, Yan‐Jun oth Yu, Fu‐Sheng oth Wang, Jia‐Yin oth Yang, Jin‐Lin oth Enthalten in International journal of adaptive control and signal processing Chichester, Sussex [u.a.] : Wiley, 1987 31(2017), 12, Seite 1934-1951 (DE-627)129242489 (DE-600)58715-1 (DE-576)018613578 0890-6327 nnns volume:31 year:2017 number:12 pages:1934-1951 http://dx.doi.org/10.1002/acs.2820 Volltext http://onlinelibrary.wiley.com/doi/10.1002/acs.2820/abstract https://search.proquest.com/docview/1974960207 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 50.23 AVZ 53.73 AVZ AR 31 2017 12 1934-1951 |
allfields_unstemmed |
10.1002/acs.2820 doi PQ20171228 (DE-627)OLC1999394321 (DE-599)GBVOLC1999394321 (PRQ)p950-98c281b5f7491b6d7009f123c86981bb0a1c11635ab6b202d95537cf3364a2ef3 (KEY)0163452620170000031001201934adaptivevariableuniverseofdiscoursefuzzycontrolfor DE-627 ger DE-627 rakwb eng 600 ZDB 50.23 bkl 53.73 bkl Wang, Rui verfasserin aut Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Lyapunov stability theory variable universe of discourse adaptive fuzzy control nonlinear strict‐feedback systems unknown dead zones nonbackstepping design scheme Adaptive control Coordinate transformations Computer simulation Feedback control Nonlinear systems Fuzzy control Output feedback Universe Tracking Fuzzy systems Adaptive algorithms Liu, Yan‐Jun oth Yu, Fu‐Sheng oth Wang, Jia‐Yin oth Yang, Jin‐Lin oth Enthalten in International journal of adaptive control and signal processing Chichester, Sussex [u.a.] : Wiley, 1987 31(2017), 12, Seite 1934-1951 (DE-627)129242489 (DE-600)58715-1 (DE-576)018613578 0890-6327 nnns volume:31 year:2017 number:12 pages:1934-1951 http://dx.doi.org/10.1002/acs.2820 Volltext http://onlinelibrary.wiley.com/doi/10.1002/acs.2820/abstract https://search.proquest.com/docview/1974960207 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 50.23 AVZ 53.73 AVZ AR 31 2017 12 1934-1951 |
allfieldsGer |
10.1002/acs.2820 doi PQ20171228 (DE-627)OLC1999394321 (DE-599)GBVOLC1999394321 (PRQ)p950-98c281b5f7491b6d7009f123c86981bb0a1c11635ab6b202d95537cf3364a2ef3 (KEY)0163452620170000031001201934adaptivevariableuniverseofdiscoursefuzzycontrolfor DE-627 ger DE-627 rakwb eng 600 ZDB 50.23 bkl 53.73 bkl Wang, Rui verfasserin aut Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Lyapunov stability theory variable universe of discourse adaptive fuzzy control nonlinear strict‐feedback systems unknown dead zones nonbackstepping design scheme Adaptive control Coordinate transformations Computer simulation Feedback control Nonlinear systems Fuzzy control Output feedback Universe Tracking Fuzzy systems Adaptive algorithms Liu, Yan‐Jun oth Yu, Fu‐Sheng oth Wang, Jia‐Yin oth Yang, Jin‐Lin oth Enthalten in International journal of adaptive control and signal processing Chichester, Sussex [u.a.] : Wiley, 1987 31(2017), 12, Seite 1934-1951 (DE-627)129242489 (DE-600)58715-1 (DE-576)018613578 0890-6327 nnns volume:31 year:2017 number:12 pages:1934-1951 http://dx.doi.org/10.1002/acs.2820 Volltext http://onlinelibrary.wiley.com/doi/10.1002/acs.2820/abstract https://search.proquest.com/docview/1974960207 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 50.23 AVZ 53.73 AVZ AR 31 2017 12 1934-1951 |
allfieldsSound |
10.1002/acs.2820 doi PQ20171228 (DE-627)OLC1999394321 (DE-599)GBVOLC1999394321 (PRQ)p950-98c281b5f7491b6d7009f123c86981bb0a1c11635ab6b202d95537cf3364a2ef3 (KEY)0163452620170000031001201934adaptivevariableuniverseofdiscoursefuzzycontrolfor DE-627 ger DE-627 rakwb eng 600 ZDB 50.23 bkl 53.73 bkl Wang, Rui verfasserin aut Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach. Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd. Lyapunov stability theory variable universe of discourse adaptive fuzzy control nonlinear strict‐feedback systems unknown dead zones nonbackstepping design scheme Adaptive control Coordinate transformations Computer simulation Feedback control Nonlinear systems Fuzzy control Output feedback Universe Tracking Fuzzy systems Adaptive algorithms Liu, Yan‐Jun oth Yu, Fu‐Sheng oth Wang, Jia‐Yin oth Yang, Jin‐Lin oth Enthalten in International journal of adaptive control and signal processing Chichester, Sussex [u.a.] : Wiley, 1987 31(2017), 12, Seite 1934-1951 (DE-627)129242489 (DE-600)58715-1 (DE-576)018613578 0890-6327 nnns volume:31 year:2017 number:12 pages:1934-1951 http://dx.doi.org/10.1002/acs.2820 Volltext http://onlinelibrary.wiley.com/doi/10.1002/acs.2820/abstract https://search.proquest.com/docview/1974960207 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 50.23 AVZ 53.73 AVZ AR 31 2017 12 1934-1951 |
language |
English |
source |
Enthalten in International journal of adaptive control and signal processing 31(2017), 12, Seite 1934-1951 volume:31 year:2017 number:12 pages:1934-1951 |
sourceStr |
Enthalten in International journal of adaptive control and signal processing 31(2017), 12, Seite 1934-1951 volume:31 year:2017 number:12 pages:1934-1951 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lyapunov stability theory variable universe of discourse adaptive fuzzy control nonlinear strict‐feedback systems unknown dead zones nonbackstepping design scheme Adaptive control Coordinate transformations Computer simulation Feedback control Nonlinear systems Fuzzy control Output feedback Universe Tracking Fuzzy systems Adaptive algorithms |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
International journal of adaptive control and signal processing |
authorswithroles_txt_mv |
Wang, Rui @@aut@@ Liu, Yan‐Jun @@oth@@ Yu, Fu‐Sheng @@oth@@ Wang, Jia‐Yin @@oth@@ Yang, Jin‐Lin @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129242489 |
dewey-sort |
3600 |
id |
OLC1999394321 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999394321</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216064854.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/acs.2820</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999394321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999394321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p950-98c281b5f7491b6d7009f123c86981bb0a1c11635ab6b202d95537cf3364a2ef3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163452620170000031001201934adaptivevariableuniverseofdiscoursefuzzycontrolfor</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov stability theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variable universe of discourse adaptive fuzzy control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear strict‐feedback systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unknown dead zones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonbackstepping design scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordinate transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feedback control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Output feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Universe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yan‐Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Fu‐Sheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jia‐Yin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jin‐Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of adaptive control and signal processing</subfield><subfield code="d">Chichester, Sussex [u.a.] : Wiley, 1987</subfield><subfield code="g">31(2017), 12, Seite 1934-1951</subfield><subfield code="w">(DE-627)129242489</subfield><subfield code="w">(DE-600)58715-1</subfield><subfield code="w">(DE-576)018613578</subfield><subfield code="x">0890-6327</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:1934-1951</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/acs.2820</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/acs.2820/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1974960207</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2017</subfield><subfield code="e">12</subfield><subfield code="h">1934-1951</subfield></datafield></record></collection>
|
author |
Wang, Rui |
spellingShingle |
Wang, Rui ddc 600 bkl 50.23 bkl 53.73 misc Lyapunov stability theory misc variable universe of discourse adaptive fuzzy control misc nonlinear strict‐feedback systems misc unknown dead zones misc nonbackstepping design scheme misc Adaptive control misc Coordinate transformations misc Computer simulation misc Feedback control misc Nonlinear systems misc Fuzzy control misc Output feedback misc Universe misc Tracking misc Fuzzy systems misc Adaptive algorithms Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones |
authorStr |
Wang, Rui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129242489 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0890-6327 |
topic_title |
600 ZDB 50.23 bkl 53.73 bkl Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones Lyapunov stability theory variable universe of discourse adaptive fuzzy control nonlinear strict‐feedback systems unknown dead zones nonbackstepping design scheme Adaptive control Coordinate transformations Computer simulation Feedback control Nonlinear systems Fuzzy control Output feedback Universe Tracking Fuzzy systems Adaptive algorithms |
topic |
ddc 600 bkl 50.23 bkl 53.73 misc Lyapunov stability theory misc variable universe of discourse adaptive fuzzy control misc nonlinear strict‐feedback systems misc unknown dead zones misc nonbackstepping design scheme misc Adaptive control misc Coordinate transformations misc Computer simulation misc Feedback control misc Nonlinear systems misc Fuzzy control misc Output feedback misc Universe misc Tracking misc Fuzzy systems misc Adaptive algorithms |
topic_unstemmed |
ddc 600 bkl 50.23 bkl 53.73 misc Lyapunov stability theory misc variable universe of discourse adaptive fuzzy control misc nonlinear strict‐feedback systems misc unknown dead zones misc nonbackstepping design scheme misc Adaptive control misc Coordinate transformations misc Computer simulation misc Feedback control misc Nonlinear systems misc Fuzzy control misc Output feedback misc Universe misc Tracking misc Fuzzy systems misc Adaptive algorithms |
topic_browse |
ddc 600 bkl 50.23 bkl 53.73 misc Lyapunov stability theory misc variable universe of discourse adaptive fuzzy control misc nonlinear strict‐feedback systems misc unknown dead zones misc nonbackstepping design scheme misc Adaptive control misc Coordinate transformations misc Computer simulation misc Feedback control misc Nonlinear systems misc Fuzzy control misc Output feedback misc Universe misc Tracking misc Fuzzy systems misc Adaptive algorithms |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y l yl f y fy j w jw j y jy |
hierarchy_parent_title |
International journal of adaptive control and signal processing |
hierarchy_parent_id |
129242489 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
International journal of adaptive control and signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129242489 (DE-600)58715-1 (DE-576)018613578 |
title |
Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones |
ctrlnum |
(DE-627)OLC1999394321 (DE-599)GBVOLC1999394321 (PRQ)p950-98c281b5f7491b6d7009f123c86981bb0a1c11635ab6b202d95537cf3364a2ef3 (KEY)0163452620170000031001201934adaptivevariableuniverseofdiscoursefuzzycontrolfor |
title_full |
Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones |
author_sort |
Wang, Rui |
journal |
International journal of adaptive control and signal processing |
journalStr |
International journal of adaptive control and signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1934 |
author_browse |
Wang, Rui |
container_volume |
31 |
class |
600 ZDB 50.23 bkl 53.73 bkl |
format_se |
Aufsätze |
author-letter |
Wang, Rui |
doi_str_mv |
10.1002/acs.2820 |
dewey-full |
600 |
title_sort |
adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones |
title_auth |
Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones |
abstract |
In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach. |
abstractGer |
In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach. |
abstract_unstemmed |
In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
12 |
title_short |
Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones |
url |
http://dx.doi.org/10.1002/acs.2820 http://onlinelibrary.wiley.com/doi/10.1002/acs.2820/abstract https://search.proquest.com/docview/1974960207 |
remote_bool |
false |
author2 |
Liu, Yan‐Jun Yu, Fu‐Sheng Wang, Jia‐Yin Yang, Jin‐Lin |
author2Str |
Liu, Yan‐Jun Yu, Fu‐Sheng Wang, Jia‐Yin Yang, Jin‐Lin |
ppnlink |
129242489 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1002/acs.2820 |
up_date |
2024-07-03T14:05:34.730Z |
_version_ |
1803567009350287360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999394321</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216064854.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/acs.2820</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999394321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999394321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p950-98c281b5f7491b6d7009f123c86981bb0a1c11635ab6b202d95537cf3364a2ef3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163452620170000031001201934adaptivevariableuniverseofdiscoursefuzzycontrolfor</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive variable universe of discourse fuzzy control for a class of nonlinear systems with unknown dead zones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov stability theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variable universe of discourse adaptive fuzzy control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear strict‐feedback systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unknown dead zones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonbackstepping design scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordinate transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feedback control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Output feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Universe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yan‐Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Fu‐Sheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jia‐Yin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jin‐Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of adaptive control and signal processing</subfield><subfield code="d">Chichester, Sussex [u.a.] : Wiley, 1987</subfield><subfield code="g">31(2017), 12, Seite 1934-1951</subfield><subfield code="w">(DE-627)129242489</subfield><subfield code="w">(DE-600)58715-1</subfield><subfield code="w">(DE-576)018613578</subfield><subfield code="x">0890-6327</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:1934-1951</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/acs.2820</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/acs.2820/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1974960207</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2017</subfield><subfield code="e">12</subfield><subfield code="h">1934-1951</subfield></datafield></record></collection>
|
score |
7.4020357 |