Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect
In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly,...
Ausführliche Beschreibung
Autor*in: |
Wu, Daiyong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of difference equations and applications - Amsterdam : Gordon and Breach, 1995, 23(2017), 11, Seite 1765 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2017 ; number:11 ; pages:1765 |
Links: |
---|
DOI / URN: |
10.1080/10236198.2017.1367389 |
---|
Katalog-ID: |
OLC1999617029 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1999617029 | ||
003 | DE-627 | ||
005 | 20230715084808.0 | ||
007 | tu | ||
008 | 171228s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/10236198.2017.1367389 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1999617029 | ||
035 | |a (DE-599)GBVOLC1999617029 | ||
035 | |a (PRQ)i1134-82ee90f713db798108a2ea3796d7133d89bc6124a51b4819a4f87f807ca7cda30 | ||
035 | |a (KEY)0276061420170000023001101765complexdynamicsofadiscretepredatorpreymodelwiththe | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ZDB |
100 | 1 | |a Wu, Daiyong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour. | ||
540 | |a Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 | ||
650 | 4 | |a Marotto's Chaos | |
650 | 4 | |a flip bifurcation | |
650 | 4 | |a Allee effect | |
650 | 4 | |a predator-prey model | |
650 | 4 | |a 92D25 | |
650 | 4 | |a codimension-two bifurcation | |
650 | 4 | |a Neimark-Sacker bifurcation | |
650 | 4 | |a 39A30 | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Equilibrium | |
650 | 4 | |a Sensitivity analysis | |
650 | 4 | |a Bifurcation theory | |
650 | 4 | |a Numerical methods | |
650 | 4 | |a Liapunov exponents | |
700 | 1 | |a Zhao, Hongyong |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of difference equations and applications |d Amsterdam : Gordon and Breach, 1995 |g 23(2017), 11, Seite 1765 |w (DE-627)192176633 |w (DE-600)1306548-8 |w (DE-576)9192176631 |x 1023-6198 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2017 |g number:11 |g pages:1765 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/10236198.2017.1367389 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1367389 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1969003074 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 23 |j 2017 |e 11 |h 1765 |
author_variant |
d w dw |
---|---|
matchkey_str |
article:10236198:2017----::opednmcoaiceerdtrryoewtteryu |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1080/10236198.2017.1367389 doi PQ20171228 (DE-627)OLC1999617029 (DE-599)GBVOLC1999617029 (PRQ)i1134-82ee90f713db798108a2ea3796d7133d89bc6124a51b4819a4f87f807ca7cda30 (KEY)0276061420170000023001101765complexdynamicsofadiscretepredatorpreymodelwiththe DE-627 ger DE-627 rakwb eng 510 ZDB Wu, Daiyong verfasserin aut Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Marotto's Chaos flip bifurcation Allee effect predator-prey model 92D25 codimension-two bifurcation Neimark-Sacker bifurcation 39A30 Computer simulation Mathematical models Equilibrium Sensitivity analysis Bifurcation theory Numerical methods Liapunov exponents Zhao, Hongyong oth Enthalten in Journal of difference equations and applications Amsterdam : Gordon and Breach, 1995 23(2017), 11, Seite 1765 (DE-627)192176633 (DE-600)1306548-8 (DE-576)9192176631 1023-6198 nnns volume:23 year:2017 number:11 pages:1765 http://dx.doi.org/10.1080/10236198.2017.1367389 Volltext http://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1367389 https://search.proquest.com/docview/1969003074 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 23 2017 11 1765 |
spelling |
10.1080/10236198.2017.1367389 doi PQ20171228 (DE-627)OLC1999617029 (DE-599)GBVOLC1999617029 (PRQ)i1134-82ee90f713db798108a2ea3796d7133d89bc6124a51b4819a4f87f807ca7cda30 (KEY)0276061420170000023001101765complexdynamicsofadiscretepredatorpreymodelwiththe DE-627 ger DE-627 rakwb eng 510 ZDB Wu, Daiyong verfasserin aut Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Marotto's Chaos flip bifurcation Allee effect predator-prey model 92D25 codimension-two bifurcation Neimark-Sacker bifurcation 39A30 Computer simulation Mathematical models Equilibrium Sensitivity analysis Bifurcation theory Numerical methods Liapunov exponents Zhao, Hongyong oth Enthalten in Journal of difference equations and applications Amsterdam : Gordon and Breach, 1995 23(2017), 11, Seite 1765 (DE-627)192176633 (DE-600)1306548-8 (DE-576)9192176631 1023-6198 nnns volume:23 year:2017 number:11 pages:1765 http://dx.doi.org/10.1080/10236198.2017.1367389 Volltext http://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1367389 https://search.proquest.com/docview/1969003074 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 23 2017 11 1765 |
allfields_unstemmed |
10.1080/10236198.2017.1367389 doi PQ20171228 (DE-627)OLC1999617029 (DE-599)GBVOLC1999617029 (PRQ)i1134-82ee90f713db798108a2ea3796d7133d89bc6124a51b4819a4f87f807ca7cda30 (KEY)0276061420170000023001101765complexdynamicsofadiscretepredatorpreymodelwiththe DE-627 ger DE-627 rakwb eng 510 ZDB Wu, Daiyong verfasserin aut Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Marotto's Chaos flip bifurcation Allee effect predator-prey model 92D25 codimension-two bifurcation Neimark-Sacker bifurcation 39A30 Computer simulation Mathematical models Equilibrium Sensitivity analysis Bifurcation theory Numerical methods Liapunov exponents Zhao, Hongyong oth Enthalten in Journal of difference equations and applications Amsterdam : Gordon and Breach, 1995 23(2017), 11, Seite 1765 (DE-627)192176633 (DE-600)1306548-8 (DE-576)9192176631 1023-6198 nnns volume:23 year:2017 number:11 pages:1765 http://dx.doi.org/10.1080/10236198.2017.1367389 Volltext http://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1367389 https://search.proquest.com/docview/1969003074 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 23 2017 11 1765 |
allfieldsGer |
10.1080/10236198.2017.1367389 doi PQ20171228 (DE-627)OLC1999617029 (DE-599)GBVOLC1999617029 (PRQ)i1134-82ee90f713db798108a2ea3796d7133d89bc6124a51b4819a4f87f807ca7cda30 (KEY)0276061420170000023001101765complexdynamicsofadiscretepredatorpreymodelwiththe DE-627 ger DE-627 rakwb eng 510 ZDB Wu, Daiyong verfasserin aut Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Marotto's Chaos flip bifurcation Allee effect predator-prey model 92D25 codimension-two bifurcation Neimark-Sacker bifurcation 39A30 Computer simulation Mathematical models Equilibrium Sensitivity analysis Bifurcation theory Numerical methods Liapunov exponents Zhao, Hongyong oth Enthalten in Journal of difference equations and applications Amsterdam : Gordon and Breach, 1995 23(2017), 11, Seite 1765 (DE-627)192176633 (DE-600)1306548-8 (DE-576)9192176631 1023-6198 nnns volume:23 year:2017 number:11 pages:1765 http://dx.doi.org/10.1080/10236198.2017.1367389 Volltext http://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1367389 https://search.proquest.com/docview/1969003074 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 23 2017 11 1765 |
allfieldsSound |
10.1080/10236198.2017.1367389 doi PQ20171228 (DE-627)OLC1999617029 (DE-599)GBVOLC1999617029 (PRQ)i1134-82ee90f713db798108a2ea3796d7133d89bc6124a51b4819a4f87f807ca7cda30 (KEY)0276061420170000023001101765complexdynamicsofadiscretepredatorpreymodelwiththe DE-627 ger DE-627 rakwb eng 510 ZDB Wu, Daiyong verfasserin aut Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Marotto's Chaos flip bifurcation Allee effect predator-prey model 92D25 codimension-two bifurcation Neimark-Sacker bifurcation 39A30 Computer simulation Mathematical models Equilibrium Sensitivity analysis Bifurcation theory Numerical methods Liapunov exponents Zhao, Hongyong oth Enthalten in Journal of difference equations and applications Amsterdam : Gordon and Breach, 1995 23(2017), 11, Seite 1765 (DE-627)192176633 (DE-600)1306548-8 (DE-576)9192176631 1023-6198 nnns volume:23 year:2017 number:11 pages:1765 http://dx.doi.org/10.1080/10236198.2017.1367389 Volltext http://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1367389 https://search.proquest.com/docview/1969003074 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 23 2017 11 1765 |
language |
English |
source |
Enthalten in Journal of difference equations and applications 23(2017), 11, Seite 1765 volume:23 year:2017 number:11 pages:1765 |
sourceStr |
Enthalten in Journal of difference equations and applications 23(2017), 11, Seite 1765 volume:23 year:2017 number:11 pages:1765 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Marotto's Chaos flip bifurcation Allee effect predator-prey model 92D25 codimension-two bifurcation Neimark-Sacker bifurcation 39A30 Computer simulation Mathematical models Equilibrium Sensitivity analysis Bifurcation theory Numerical methods Liapunov exponents |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of difference equations and applications |
authorswithroles_txt_mv |
Wu, Daiyong @@aut@@ Zhao, Hongyong @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
192176633 |
dewey-sort |
3510 |
id |
OLC1999617029 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999617029</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715084808.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/10236198.2017.1367389</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999617029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999617029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1134-82ee90f713db798108a2ea3796d7133d89bc6124a51b4819a4f87f807ca7cda30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0276061420170000023001101765complexdynamicsofadiscretepredatorpreymodelwiththe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Daiyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marotto's Chaos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flip bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Allee effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predator-prey model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">92D25</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">codimension-two bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neimark-Sacker bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">39A30</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liapunov exponents</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Hongyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of difference equations and applications</subfield><subfield code="d">Amsterdam : Gordon and Breach, 1995</subfield><subfield code="g">23(2017), 11, Seite 1765</subfield><subfield code="w">(DE-627)192176633</subfield><subfield code="w">(DE-600)1306548-8</subfield><subfield code="w">(DE-576)9192176631</subfield><subfield code="x">1023-6198</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:1765</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/10236198.2017.1367389</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1367389</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1969003074</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2017</subfield><subfield code="e">11</subfield><subfield code="h">1765</subfield></datafield></record></collection>
|
author |
Wu, Daiyong |
spellingShingle |
Wu, Daiyong ddc 510 misc Marotto's Chaos misc flip bifurcation misc Allee effect misc predator-prey model misc 92D25 misc codimension-two bifurcation misc Neimark-Sacker bifurcation misc 39A30 misc Computer simulation misc Mathematical models misc Equilibrium misc Sensitivity analysis misc Bifurcation theory misc Numerical methods misc Liapunov exponents Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect |
authorStr |
Wu, Daiyong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)192176633 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1023-6198 |
topic_title |
510 ZDB Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect Marotto's Chaos flip bifurcation Allee effect predator-prey model 92D25 codimension-two bifurcation Neimark-Sacker bifurcation 39A30 Computer simulation Mathematical models Equilibrium Sensitivity analysis Bifurcation theory Numerical methods Liapunov exponents |
topic |
ddc 510 misc Marotto's Chaos misc flip bifurcation misc Allee effect misc predator-prey model misc 92D25 misc codimension-two bifurcation misc Neimark-Sacker bifurcation misc 39A30 misc Computer simulation misc Mathematical models misc Equilibrium misc Sensitivity analysis misc Bifurcation theory misc Numerical methods misc Liapunov exponents |
topic_unstemmed |
ddc 510 misc Marotto's Chaos misc flip bifurcation misc Allee effect misc predator-prey model misc 92D25 misc codimension-two bifurcation misc Neimark-Sacker bifurcation misc 39A30 misc Computer simulation misc Mathematical models misc Equilibrium misc Sensitivity analysis misc Bifurcation theory misc Numerical methods misc Liapunov exponents |
topic_browse |
ddc 510 misc Marotto's Chaos misc flip bifurcation misc Allee effect misc predator-prey model misc 92D25 misc codimension-two bifurcation misc Neimark-Sacker bifurcation misc 39A30 misc Computer simulation misc Mathematical models misc Equilibrium misc Sensitivity analysis misc Bifurcation theory misc Numerical methods misc Liapunov exponents |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h z hz |
hierarchy_parent_title |
Journal of difference equations and applications |
hierarchy_parent_id |
192176633 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of difference equations and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)192176633 (DE-600)1306548-8 (DE-576)9192176631 |
title |
Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect |
ctrlnum |
(DE-627)OLC1999617029 (DE-599)GBVOLC1999617029 (PRQ)i1134-82ee90f713db798108a2ea3796d7133d89bc6124a51b4819a4f87f807ca7cda30 (KEY)0276061420170000023001101765complexdynamicsofadiscretepredatorpreymodelwiththe |
title_full |
Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect |
author_sort |
Wu, Daiyong |
journal |
Journal of difference equations and applications |
journalStr |
Journal of difference equations and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1765 |
author_browse |
Wu, Daiyong |
container_volume |
23 |
class |
510 ZDB |
format_se |
Aufsätze |
author-letter |
Wu, Daiyong |
doi_str_mv |
10.1080/10236198.2017.1367389 |
dewey-full |
510 |
title_sort |
complex dynamics of a discrete predator-prey model with the prey subject to the allee effect |
title_auth |
Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect |
abstract |
In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour. |
abstractGer |
In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour. |
abstract_unstemmed |
In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
11 |
title_short |
Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect |
url |
http://dx.doi.org/10.1080/10236198.2017.1367389 http://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1367389 https://search.proquest.com/docview/1969003074 |
remote_bool |
false |
author2 |
Zhao, Hongyong |
author2Str |
Zhao, Hongyong |
ppnlink |
192176633 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1080/10236198.2017.1367389 |
up_date |
2024-07-03T14:48:24.815Z |
_version_ |
1803569704277639168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1999617029</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715084808.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171228s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/10236198.2017.1367389</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1999617029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1999617029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1134-82ee90f713db798108a2ea3796d7133d89bc6124a51b4819a4f87f807ca7cda30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0276061420170000023001101765complexdynamicsofadiscretepredatorpreymodelwiththe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Daiyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marotto's Chaos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flip bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Allee effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predator-prey model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">92D25</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">codimension-two bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neimark-Sacker bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">39A30</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liapunov exponents</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Hongyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of difference equations and applications</subfield><subfield code="d">Amsterdam : Gordon and Breach, 1995</subfield><subfield code="g">23(2017), 11, Seite 1765</subfield><subfield code="w">(DE-627)192176633</subfield><subfield code="w">(DE-600)1306548-8</subfield><subfield code="w">(DE-576)9192176631</subfield><subfield code="x">1023-6198</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:1765</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/10236198.2017.1367389</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1367389</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1969003074</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2017</subfield><subfield code="e">11</subfield><subfield code="h">1765</subfield></datafield></record></collection>
|
score |
7.400177 |