Estimation in semiparametric models using an auxiliary model
Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative ef...
Ausführliche Beschreibung
Autor*in: |
Huschens, Stefan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1995 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1995 |
---|
Übergeordnetes Werk: |
Enthalten in: Statistical papers - Springer Berlin Heidelberg, 1988, 36(1995), 1 vom: 01. Dez., Seite 313-326 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:1995 ; number:1 ; day:01 ; month:12 ; pages:313-326 |
Links: |
---|
DOI / URN: |
10.1007/BF02926045 |
---|
Katalog-ID: |
OLC2025015453 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025015453 | ||
003 | DE-627 | ||
005 | 20230331143230.0 | ||
007 | tu | ||
008 | 200819s1995 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02926045 |2 doi | |
035 | |a (DE-627)OLC2025015453 | ||
035 | |a (DE-He213)BF02926045-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 300 |a 330 |a 510 |q VZ |
100 | 1 | |a Huschens, Stefan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Estimation in semiparametric models using an auxiliary model |
264 | 1 | |c 1995 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1995 | ||
520 | |a Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given. | ||
650 | 4 | |a semiparametric model | |
650 | 4 | |a nonparametric maximum likelihood estimation | |
650 | 4 | |a auxiliary model | |
700 | 1 | |a Stahl, Gerhard |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Statistical papers |d Springer Berlin Heidelberg, 1988 |g 36(1995), 1 vom: 01. Dez., Seite 313-326 |w (DE-627)129572292 |w (DE-600)227641-0 |w (DE-576)015069486 |x 0932-5026 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:1995 |g number:1 |g day:01 |g month:12 |g pages:313-326 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02926045 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_754 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4309 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 36 |j 1995 |e 1 |b 01 |c 12 |h 313-326 |
author_variant |
s h sh g s gs |
---|---|
matchkey_str |
article:09325026:1995----::siainneiaaercoessna |
hierarchy_sort_str |
1995 |
publishDate |
1995 |
allfields |
10.1007/BF02926045 doi (DE-627)OLC2025015453 (DE-He213)BF02926045-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Huschens, Stefan verfasserin aut Estimation in semiparametric models using an auxiliary model 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given. semiparametric model nonparametric maximum likelihood estimation auxiliary model Stahl, Gerhard aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 36(1995), 1 vom: 01. Dez., Seite 313-326 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:36 year:1995 number:1 day:01 month:12 pages:313-326 https://doi.org/10.1007/BF02926045 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_151 GBV_ILN_754 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4700 AR 36 1995 1 01 12 313-326 |
spelling |
10.1007/BF02926045 doi (DE-627)OLC2025015453 (DE-He213)BF02926045-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Huschens, Stefan verfasserin aut Estimation in semiparametric models using an auxiliary model 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given. semiparametric model nonparametric maximum likelihood estimation auxiliary model Stahl, Gerhard aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 36(1995), 1 vom: 01. Dez., Seite 313-326 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:36 year:1995 number:1 day:01 month:12 pages:313-326 https://doi.org/10.1007/BF02926045 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_151 GBV_ILN_754 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4700 AR 36 1995 1 01 12 313-326 |
allfields_unstemmed |
10.1007/BF02926045 doi (DE-627)OLC2025015453 (DE-He213)BF02926045-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Huschens, Stefan verfasserin aut Estimation in semiparametric models using an auxiliary model 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given. semiparametric model nonparametric maximum likelihood estimation auxiliary model Stahl, Gerhard aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 36(1995), 1 vom: 01. Dez., Seite 313-326 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:36 year:1995 number:1 day:01 month:12 pages:313-326 https://doi.org/10.1007/BF02926045 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_151 GBV_ILN_754 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4700 AR 36 1995 1 01 12 313-326 |
allfieldsGer |
10.1007/BF02926045 doi (DE-627)OLC2025015453 (DE-He213)BF02926045-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Huschens, Stefan verfasserin aut Estimation in semiparametric models using an auxiliary model 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given. semiparametric model nonparametric maximum likelihood estimation auxiliary model Stahl, Gerhard aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 36(1995), 1 vom: 01. Dez., Seite 313-326 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:36 year:1995 number:1 day:01 month:12 pages:313-326 https://doi.org/10.1007/BF02926045 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_151 GBV_ILN_754 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4700 AR 36 1995 1 01 12 313-326 |
allfieldsSound |
10.1007/BF02926045 doi (DE-627)OLC2025015453 (DE-He213)BF02926045-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Huschens, Stefan verfasserin aut Estimation in semiparametric models using an auxiliary model 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given. semiparametric model nonparametric maximum likelihood estimation auxiliary model Stahl, Gerhard aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 36(1995), 1 vom: 01. Dez., Seite 313-326 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:36 year:1995 number:1 day:01 month:12 pages:313-326 https://doi.org/10.1007/BF02926045 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_151 GBV_ILN_754 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4700 AR 36 1995 1 01 12 313-326 |
language |
English |
source |
Enthalten in Statistical papers 36(1995), 1 vom: 01. Dez., Seite 313-326 volume:36 year:1995 number:1 day:01 month:12 pages:313-326 |
sourceStr |
Enthalten in Statistical papers 36(1995), 1 vom: 01. Dez., Seite 313-326 volume:36 year:1995 number:1 day:01 month:12 pages:313-326 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
semiparametric model nonparametric maximum likelihood estimation auxiliary model |
dewey-raw |
300 |
isfreeaccess_bool |
false |
container_title |
Statistical papers |
authorswithroles_txt_mv |
Huschens, Stefan @@aut@@ Stahl, Gerhard @@aut@@ |
publishDateDaySort_date |
1995-12-01T00:00:00Z |
hierarchy_top_id |
129572292 |
dewey-sort |
3300 |
id |
OLC2025015453 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025015453</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331143230.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02926045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025015453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02926045-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huschens, Stefan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation in semiparametric models using an auxiliary model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semiparametric model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonparametric maximum likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">auxiliary model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stahl, Gerhard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical papers</subfield><subfield code="d">Springer Berlin Heidelberg, 1988</subfield><subfield code="g">36(1995), 1 vom: 01. Dez., Seite 313-326</subfield><subfield code="w">(DE-627)129572292</subfield><subfield code="w">(DE-600)227641-0</subfield><subfield code="w">(DE-576)015069486</subfield><subfield code="x">0932-5026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:313-326</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02926045</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">1995</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">313-326</subfield></datafield></record></collection>
|
author |
Huschens, Stefan |
spellingShingle |
Huschens, Stefan ddc 300 misc semiparametric model misc nonparametric maximum likelihood estimation misc auxiliary model Estimation in semiparametric models using an auxiliary model |
authorStr |
Huschens, Stefan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129572292 |
format |
Article |
dewey-ones |
300 - Social sciences 330 - Economics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0932-5026 |
topic_title |
300 330 510 VZ Estimation in semiparametric models using an auxiliary model semiparametric model nonparametric maximum likelihood estimation auxiliary model |
topic |
ddc 300 misc semiparametric model misc nonparametric maximum likelihood estimation misc auxiliary model |
topic_unstemmed |
ddc 300 misc semiparametric model misc nonparametric maximum likelihood estimation misc auxiliary model |
topic_browse |
ddc 300 misc semiparametric model misc nonparametric maximum likelihood estimation misc auxiliary model |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Statistical papers |
hierarchy_parent_id |
129572292 |
dewey-tens |
300 - Social sciences, sociology & anthropology 330 - Economics 510 - Mathematics |
hierarchy_top_title |
Statistical papers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 |
title |
Estimation in semiparametric models using an auxiliary model |
ctrlnum |
(DE-627)OLC2025015453 (DE-He213)BF02926045-p |
title_full |
Estimation in semiparametric models using an auxiliary model |
author_sort |
Huschens, Stefan |
journal |
Statistical papers |
journalStr |
Statistical papers |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science |
recordtype |
marc |
publishDateSort |
1995 |
contenttype_str_mv |
txt |
container_start_page |
313 |
author_browse |
Huschens, Stefan Stahl, Gerhard |
container_volume |
36 |
class |
300 330 510 VZ |
format_se |
Aufsätze |
author-letter |
Huschens, Stefan |
doi_str_mv |
10.1007/BF02926045 |
dewey-full |
300 330 510 |
title_sort |
estimation in semiparametric models using an auxiliary model |
title_auth |
Estimation in semiparametric models using an auxiliary model |
abstract |
Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given. © Springer-Verlag 1995 |
abstractGer |
Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given. © Springer-Verlag 1995 |
abstract_unstemmed |
Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given. © Springer-Verlag 1995 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_151 GBV_ILN_754 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4309 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Estimation in semiparametric models using an auxiliary model |
url |
https://doi.org/10.1007/BF02926045 |
remote_bool |
false |
author2 |
Stahl, Gerhard |
author2Str |
Stahl, Gerhard |
ppnlink |
129572292 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02926045 |
up_date |
2024-07-03T23:24:11.211Z |
_version_ |
1803602153926819840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025015453</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331143230.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02926045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025015453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02926045-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huschens, Stefan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation in semiparametric models using an auxiliary model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Two classes of semiparametric and nonparametric mixture models are defined to represent general kinds of prior information. For these models the nonparametric maximum likelihood estimator (NPMLE) of an unknown probability distribution is derived and is shown to be consistent and relative efficient. Linear functionals are used for the estimation of parameters. Their consistency is proved, the gain of efficiency is derived and asymptotical distributions are given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semiparametric model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonparametric maximum likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">auxiliary model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stahl, Gerhard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical papers</subfield><subfield code="d">Springer Berlin Heidelberg, 1988</subfield><subfield code="g">36(1995), 1 vom: 01. Dez., Seite 313-326</subfield><subfield code="w">(DE-627)129572292</subfield><subfield code="w">(DE-600)227641-0</subfield><subfield code="w">(DE-576)015069486</subfield><subfield code="x">0932-5026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:313-326</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02926045</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">1995</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">313-326</subfield></datafield></record></collection>
|
score |
7.401231 |