Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation
Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this...
Ausführliche Beschreibung
Autor*in: |
Aerts, S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Statistical papers - Springer Berlin Heidelberg, 1988, 59(2016), 2 vom: 21. Mai, Seite 545-579 |
---|---|
Übergeordnetes Werk: |
volume:59 ; year:2016 ; number:2 ; day:21 ; month:05 ; pages:545-579 |
Links: |
---|
DOI / URN: |
10.1007/s00362-016-0777-4 |
---|
Katalog-ID: |
OLC2025028121 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025028121 | ||
003 | DE-627 | ||
005 | 20230331143344.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00362-016-0777-4 |2 doi | |
035 | |a (DE-627)OLC2025028121 | ||
035 | |a (DE-He213)s00362-016-0777-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 300 |a 330 |a 510 |q VZ |
100 | 1 | |a Aerts, S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2016 | ||
520 | |a Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations. | ||
650 | 4 | |a Multivariate coefficient of variation | |
650 | 4 | |a Bias reduction | |
650 | 4 | |a Decentralized | |
650 | 4 | |a -distribution | |
650 | 4 | |a Elliptical symmetry | |
650 | 4 | |a Sharpe Ratio | |
700 | 1 | |a Haesbroeck, G. |4 aut | |
700 | 1 | |a Ruwet, C. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Statistical papers |d Springer Berlin Heidelberg, 1988 |g 59(2016), 2 vom: 21. Mai, Seite 545-579 |w (DE-627)129572292 |w (DE-600)227641-0 |w (DE-576)015069486 |x 0932-5026 |7 nnns |
773 | 1 | 8 | |g volume:59 |g year:2016 |g number:2 |g day:21 |g month:05 |g pages:545-579 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00362-016-0777-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4326 | ||
951 | |a AR | ||
952 | |d 59 |j 2016 |e 2 |b 21 |c 05 |h 545-579 |
author_variant |
s a sa g h gh c r cr |
---|---|
matchkey_str |
article:09325026:2016----::itiuinneelpiasmeroaitneaemliait |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00362-016-0777-4 doi (DE-627)OLC2025028121 (DE-He213)s00362-016-0777-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Aerts, S. verfasserin aut Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations. Multivariate coefficient of variation Bias reduction Decentralized -distribution Elliptical symmetry Sharpe Ratio Haesbroeck, G. aut Ruwet, C. aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 59(2016), 2 vom: 21. Mai, Seite 545-579 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:59 year:2016 number:2 day:21 month:05 pages:545-579 https://doi.org/10.1007/s00362-016-0777-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 59 2016 2 21 05 545-579 |
spelling |
10.1007/s00362-016-0777-4 doi (DE-627)OLC2025028121 (DE-He213)s00362-016-0777-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Aerts, S. verfasserin aut Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations. Multivariate coefficient of variation Bias reduction Decentralized -distribution Elliptical symmetry Sharpe Ratio Haesbroeck, G. aut Ruwet, C. aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 59(2016), 2 vom: 21. Mai, Seite 545-579 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:59 year:2016 number:2 day:21 month:05 pages:545-579 https://doi.org/10.1007/s00362-016-0777-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 59 2016 2 21 05 545-579 |
allfields_unstemmed |
10.1007/s00362-016-0777-4 doi (DE-627)OLC2025028121 (DE-He213)s00362-016-0777-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Aerts, S. verfasserin aut Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations. Multivariate coefficient of variation Bias reduction Decentralized -distribution Elliptical symmetry Sharpe Ratio Haesbroeck, G. aut Ruwet, C. aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 59(2016), 2 vom: 21. Mai, Seite 545-579 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:59 year:2016 number:2 day:21 month:05 pages:545-579 https://doi.org/10.1007/s00362-016-0777-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 59 2016 2 21 05 545-579 |
allfieldsGer |
10.1007/s00362-016-0777-4 doi (DE-627)OLC2025028121 (DE-He213)s00362-016-0777-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Aerts, S. verfasserin aut Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations. Multivariate coefficient of variation Bias reduction Decentralized -distribution Elliptical symmetry Sharpe Ratio Haesbroeck, G. aut Ruwet, C. aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 59(2016), 2 vom: 21. Mai, Seite 545-579 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:59 year:2016 number:2 day:21 month:05 pages:545-579 https://doi.org/10.1007/s00362-016-0777-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 59 2016 2 21 05 545-579 |
allfieldsSound |
10.1007/s00362-016-0777-4 doi (DE-627)OLC2025028121 (DE-He213)s00362-016-0777-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Aerts, S. verfasserin aut Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations. Multivariate coefficient of variation Bias reduction Decentralized -distribution Elliptical symmetry Sharpe Ratio Haesbroeck, G. aut Ruwet, C. aut Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 59(2016), 2 vom: 21. Mai, Seite 545-579 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:59 year:2016 number:2 day:21 month:05 pages:545-579 https://doi.org/10.1007/s00362-016-0777-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 59 2016 2 21 05 545-579 |
language |
English |
source |
Enthalten in Statistical papers 59(2016), 2 vom: 21. Mai, Seite 545-579 volume:59 year:2016 number:2 day:21 month:05 pages:545-579 |
sourceStr |
Enthalten in Statistical papers 59(2016), 2 vom: 21. Mai, Seite 545-579 volume:59 year:2016 number:2 day:21 month:05 pages:545-579 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multivariate coefficient of variation Bias reduction Decentralized -distribution Elliptical symmetry Sharpe Ratio |
dewey-raw |
300 |
isfreeaccess_bool |
false |
container_title |
Statistical papers |
authorswithroles_txt_mv |
Aerts, S. @@aut@@ Haesbroeck, G. @@aut@@ Ruwet, C. @@aut@@ |
publishDateDaySort_date |
2016-05-21T00:00:00Z |
hierarchy_top_id |
129572292 |
dewey-sort |
3300 |
id |
OLC2025028121 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025028121</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331143344.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00362-016-0777-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025028121</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00362-016-0777-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aerts, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate coefficient of variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bias reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decentralized</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptical symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sharpe Ratio</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haesbroeck, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruwet, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical papers</subfield><subfield code="d">Springer Berlin Heidelberg, 1988</subfield><subfield code="g">59(2016), 2 vom: 21. Mai, Seite 545-579</subfield><subfield code="w">(DE-627)129572292</subfield><subfield code="w">(DE-600)227641-0</subfield><subfield code="w">(DE-576)015069486</subfield><subfield code="x">0932-5026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:545-579</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00362-016-0777-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">05</subfield><subfield code="h">545-579</subfield></datafield></record></collection>
|
author |
Aerts, S. |
spellingShingle |
Aerts, S. ddc 300 misc Multivariate coefficient of variation misc Bias reduction misc Decentralized misc -distribution misc Elliptical symmetry misc Sharpe Ratio Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation |
authorStr |
Aerts, S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129572292 |
format |
Article |
dewey-ones |
300 - Social sciences 330 - Economics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0932-5026 |
topic_title |
300 330 510 VZ Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation Multivariate coefficient of variation Bias reduction Decentralized -distribution Elliptical symmetry Sharpe Ratio |
topic |
ddc 300 misc Multivariate coefficient of variation misc Bias reduction misc Decentralized misc -distribution misc Elliptical symmetry misc Sharpe Ratio |
topic_unstemmed |
ddc 300 misc Multivariate coefficient of variation misc Bias reduction misc Decentralized misc -distribution misc Elliptical symmetry misc Sharpe Ratio |
topic_browse |
ddc 300 misc Multivariate coefficient of variation misc Bias reduction misc Decentralized misc -distribution misc Elliptical symmetry misc Sharpe Ratio |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Statistical papers |
hierarchy_parent_id |
129572292 |
dewey-tens |
300 - Social sciences, sociology & anthropology 330 - Economics 510 - Mathematics |
hierarchy_top_title |
Statistical papers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 |
title |
Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation |
ctrlnum |
(DE-627)OLC2025028121 (DE-He213)s00362-016-0777-4-p |
title_full |
Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation |
author_sort |
Aerts, S. |
journal |
Statistical papers |
journalStr |
Statistical papers |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
545 |
author_browse |
Aerts, S. Haesbroeck, G. Ruwet, C. |
container_volume |
59 |
class |
300 330 510 VZ |
format_se |
Aufsätze |
author-letter |
Aerts, S. |
doi_str_mv |
10.1007/s00362-016-0777-4 |
dewey-full |
300 330 510 |
title_sort |
distribution under elliptical symmetry of a distance-based multivariate coefficient of variation |
title_auth |
Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation |
abstract |
Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations. © Springer-Verlag Berlin Heidelberg 2016 |
abstractGer |
Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations. © Springer-Verlag Berlin Heidelberg 2016 |
abstract_unstemmed |
Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations. © Springer-Verlag Berlin Heidelberg 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 |
container_issue |
2 |
title_short |
Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation |
url |
https://doi.org/10.1007/s00362-016-0777-4 |
remote_bool |
false |
author2 |
Haesbroeck, G. Ruwet, C. |
author2Str |
Haesbroeck, G. Ruwet, C. |
ppnlink |
129572292 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00362-016-0777-4 |
up_date |
2024-07-03T23:26:57.527Z |
_version_ |
1803602328319688704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025028121</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331143344.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00362-016-0777-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025028121</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00362-016-0777-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aerts, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate coefficient of variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bias reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decentralized</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptical symmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sharpe Ratio</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haesbroeck, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruwet, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical papers</subfield><subfield code="d">Springer Berlin Heidelberg, 1988</subfield><subfield code="g">59(2016), 2 vom: 21. Mai, Seite 545-579</subfield><subfield code="w">(DE-627)129572292</subfield><subfield code="w">(DE-600)227641-0</subfield><subfield code="w">(DE-576)015069486</subfield><subfield code="x">0932-5026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:545-579</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00362-016-0777-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">05</subfield><subfield code="h">545-579</subfield></datafield></record></collection>
|
score |
7.401127 |