Scanned images resolution improvement using neural networks
Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi...
Ausführliche Beschreibung
Autor*in: |
Panagiotopoulou, Antigoni [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Limited 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer-Verlag, 1993, 17(2007), 1 vom: 21. März, Seite 39-47 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2007 ; number:1 ; day:21 ; month:03 ; pages:39-47 |
Links: |
---|
DOI / URN: |
10.1007/s00521-007-0106-x |
---|
Katalog-ID: |
OLC2025580657 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025580657 | ||
003 | DE-627 | ||
005 | 20230502114435.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-007-0106-x |2 doi | |
035 | |a (DE-627)OLC2025580657 | ||
035 | |a (DE-He213)s00521-007-0106-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Panagiotopoulou, Antigoni |e verfasserin |4 aut | |
245 | 1 | 0 | |a Scanned images resolution improvement using neural networks |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Limited 2007 | ||
520 | |a Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques. | ||
650 | 4 | |a Resolution improvement | |
650 | 4 | |a Neural network | |
650 | 4 | |a Scanner | |
700 | 1 | |a Anastassopoulos, Vassilis |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer-Verlag, 1993 |g 17(2007), 1 vom: 21. März, Seite 39-47 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2007 |g number:1 |g day:21 |g month:03 |g pages:39-47 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-007-0106-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 17 |j 2007 |e 1 |b 21 |c 03 |h 39-47 |
author_variant |
a p ap v a va |
---|---|
matchkey_str |
article:09410643:2007----::cneiaersltoipoeetsn |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s00521-007-0106-x doi (DE-627)OLC2025580657 (DE-He213)s00521-007-0106-x-p DE-627 ger DE-627 rakwb eng 004 VZ Panagiotopoulou, Antigoni verfasserin aut Scanned images resolution improvement using neural networks 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques. Resolution improvement Neural network Scanner Anastassopoulos, Vassilis aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 1 vom: 21. März, Seite 39-47 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:1 day:21 month:03 pages:39-47 https://doi.org/10.1007/s00521-007-0106-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 1 21 03 39-47 |
spelling |
10.1007/s00521-007-0106-x doi (DE-627)OLC2025580657 (DE-He213)s00521-007-0106-x-p DE-627 ger DE-627 rakwb eng 004 VZ Panagiotopoulou, Antigoni verfasserin aut Scanned images resolution improvement using neural networks 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques. Resolution improvement Neural network Scanner Anastassopoulos, Vassilis aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 1 vom: 21. März, Seite 39-47 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:1 day:21 month:03 pages:39-47 https://doi.org/10.1007/s00521-007-0106-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 1 21 03 39-47 |
allfields_unstemmed |
10.1007/s00521-007-0106-x doi (DE-627)OLC2025580657 (DE-He213)s00521-007-0106-x-p DE-627 ger DE-627 rakwb eng 004 VZ Panagiotopoulou, Antigoni verfasserin aut Scanned images resolution improvement using neural networks 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques. Resolution improvement Neural network Scanner Anastassopoulos, Vassilis aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 1 vom: 21. März, Seite 39-47 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:1 day:21 month:03 pages:39-47 https://doi.org/10.1007/s00521-007-0106-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 1 21 03 39-47 |
allfieldsGer |
10.1007/s00521-007-0106-x doi (DE-627)OLC2025580657 (DE-He213)s00521-007-0106-x-p DE-627 ger DE-627 rakwb eng 004 VZ Panagiotopoulou, Antigoni verfasserin aut Scanned images resolution improvement using neural networks 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques. Resolution improvement Neural network Scanner Anastassopoulos, Vassilis aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 1 vom: 21. März, Seite 39-47 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:1 day:21 month:03 pages:39-47 https://doi.org/10.1007/s00521-007-0106-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 1 21 03 39-47 |
allfieldsSound |
10.1007/s00521-007-0106-x doi (DE-627)OLC2025580657 (DE-He213)s00521-007-0106-x-p DE-627 ger DE-627 rakwb eng 004 VZ Panagiotopoulou, Antigoni verfasserin aut Scanned images resolution improvement using neural networks 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques. Resolution improvement Neural network Scanner Anastassopoulos, Vassilis aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 1 vom: 21. März, Seite 39-47 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:1 day:21 month:03 pages:39-47 https://doi.org/10.1007/s00521-007-0106-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 1 21 03 39-47 |
language |
English |
source |
Enthalten in Neural computing & applications 17(2007), 1 vom: 21. März, Seite 39-47 volume:17 year:2007 number:1 day:21 month:03 pages:39-47 |
sourceStr |
Enthalten in Neural computing & applications 17(2007), 1 vom: 21. März, Seite 39-47 volume:17 year:2007 number:1 day:21 month:03 pages:39-47 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Resolution improvement Neural network Scanner |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Panagiotopoulou, Antigoni @@aut@@ Anastassopoulos, Vassilis @@aut@@ |
publishDateDaySort_date |
2007-03-21T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2025580657 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025580657</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114435.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-007-0106-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025580657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-007-0106-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Panagiotopoulou, Antigoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scanned images resolution improvement using neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolution improvement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scanner</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anastassopoulos, Vassilis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">17(2007), 1 vom: 21. März, Seite 39-47</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:39-47</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-007-0106-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">03</subfield><subfield code="h">39-47</subfield></datafield></record></collection>
|
author |
Panagiotopoulou, Antigoni |
spellingShingle |
Panagiotopoulou, Antigoni ddc 004 misc Resolution improvement misc Neural network misc Scanner Scanned images resolution improvement using neural networks |
authorStr |
Panagiotopoulou, Antigoni |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ Scanned images resolution improvement using neural networks Resolution improvement Neural network Scanner |
topic |
ddc 004 misc Resolution improvement misc Neural network misc Scanner |
topic_unstemmed |
ddc 004 misc Resolution improvement misc Neural network misc Scanner |
topic_browse |
ddc 004 misc Resolution improvement misc Neural network misc Scanner |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
Scanned images resolution improvement using neural networks |
ctrlnum |
(DE-627)OLC2025580657 (DE-He213)s00521-007-0106-x-p |
title_full |
Scanned images resolution improvement using neural networks |
author_sort |
Panagiotopoulou, Antigoni |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
39 |
author_browse |
Panagiotopoulou, Antigoni Anastassopoulos, Vassilis |
container_volume |
17 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Panagiotopoulou, Antigoni |
doi_str_mv |
10.1007/s00521-007-0106-x |
dewey-full |
004 |
title_sort |
scanned images resolution improvement using neural networks |
title_auth |
Scanned images resolution improvement using neural networks |
abstract |
Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques. © Springer-Verlag London Limited 2007 |
abstractGer |
Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques. © Springer-Verlag London Limited 2007 |
abstract_unstemmed |
Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques. © Springer-Verlag London Limited 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Scanned images resolution improvement using neural networks |
url |
https://doi.org/10.1007/s00521-007-0106-x |
remote_bool |
false |
author2 |
Anastassopoulos, Vassilis |
author2Str |
Anastassopoulos, Vassilis |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-007-0106-x |
up_date |
2024-07-04T01:36:20.512Z |
_version_ |
1803610468398399488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025580657</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114435.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-007-0106-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025580657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-007-0106-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Panagiotopoulou, Antigoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scanned images resolution improvement using neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A novel method of improving the spatial resolution of scanned images, by means of neural networks, is presented in this paper. Images of different resolution, originating from scanner, successively train a neural network, which learns to improve resolution from 25 to 50 pixels-per-inch (ppi), then from 100 to 200 ppi and finally, from 50 to 100 ppi. Thus, the network is provided with consistent knowledge regarding the point spread function (PSF) of the scanner, whilst it gains the generalization ability to reconstruct finer resolution images unfamiliar to it. The novelty of the proposed image-resolution-enhancement technique lies in the successive training of the neural structure with images of increasing resolution. Comparisons with the image scanned at 400 ppi demonstrate the superiority of our method to conventional interpolation techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolution improvement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scanner</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anastassopoulos, Vassilis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">17(2007), 1 vom: 21. März, Seite 39-47</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:39-47</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-007-0106-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">03</subfield><subfield code="h">39-47</subfield></datafield></record></collection>
|
score |
7.4013395 |