On near optimal neural control of multiple-input nonlinear systems
Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physic...
Ausführliche Beschreibung
Autor*in: |
Chen, Dingguo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Limited 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer-Verlag, 1993, 17(2007), 4 vom: 30. Mai, Seite 327-337 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2007 ; number:4 ; day:30 ; month:05 ; pages:327-337 |
Links: |
---|
DOI / URN: |
10.1007/s00521-007-0126-6 |
---|
Katalog-ID: |
OLC2025581033 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025581033 | ||
003 | DE-627 | ||
005 | 20230502114436.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-007-0126-6 |2 doi | |
035 | |a (DE-627)OLC2025581033 | ||
035 | |a (DE-He213)s00521-007-0126-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Chen, Dingguo |e verfasserin |4 aut | |
245 | 1 | 0 | |a On near optimal neural control of multiple-input nonlinear systems |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Limited 2007 | ||
520 | |a Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective. | ||
650 | 4 | |a Uncertain nonlinear system | |
650 | 4 | |a Multiple input nonlinear system | |
650 | 4 | |a Neural network | |
650 | 4 | |a Optimal control | |
650 | 4 | |a Neural control | |
650 | 4 | |a Switching manifold | |
700 | 1 | |a Yang, Jiaben |4 aut | |
700 | 1 | |a Mohler, Ronald R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer-Verlag, 1993 |g 17(2007), 4 vom: 30. Mai, Seite 327-337 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2007 |g number:4 |g day:30 |g month:05 |g pages:327-337 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-007-0126-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 17 |j 2007 |e 4 |b 30 |c 05 |h 327-337 |
author_variant |
d c dc j y jy r r m rr rrm |
---|---|
matchkey_str |
article:09410643:2007----::nerpianuacnrlfutpenun |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s00521-007-0126-6 doi (DE-627)OLC2025581033 (DE-He213)s00521-007-0126-6-p DE-627 ger DE-627 rakwb eng 004 VZ Chen, Dingguo verfasserin aut On near optimal neural control of multiple-input nonlinear systems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective. Uncertain nonlinear system Multiple input nonlinear system Neural network Optimal control Neural control Switching manifold Yang, Jiaben aut Mohler, Ronald R. aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 4 vom: 30. Mai, Seite 327-337 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:4 day:30 month:05 pages:327-337 https://doi.org/10.1007/s00521-007-0126-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 4 30 05 327-337 |
spelling |
10.1007/s00521-007-0126-6 doi (DE-627)OLC2025581033 (DE-He213)s00521-007-0126-6-p DE-627 ger DE-627 rakwb eng 004 VZ Chen, Dingguo verfasserin aut On near optimal neural control of multiple-input nonlinear systems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective. Uncertain nonlinear system Multiple input nonlinear system Neural network Optimal control Neural control Switching manifold Yang, Jiaben aut Mohler, Ronald R. aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 4 vom: 30. Mai, Seite 327-337 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:4 day:30 month:05 pages:327-337 https://doi.org/10.1007/s00521-007-0126-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 4 30 05 327-337 |
allfields_unstemmed |
10.1007/s00521-007-0126-6 doi (DE-627)OLC2025581033 (DE-He213)s00521-007-0126-6-p DE-627 ger DE-627 rakwb eng 004 VZ Chen, Dingguo verfasserin aut On near optimal neural control of multiple-input nonlinear systems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective. Uncertain nonlinear system Multiple input nonlinear system Neural network Optimal control Neural control Switching manifold Yang, Jiaben aut Mohler, Ronald R. aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 4 vom: 30. Mai, Seite 327-337 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:4 day:30 month:05 pages:327-337 https://doi.org/10.1007/s00521-007-0126-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 4 30 05 327-337 |
allfieldsGer |
10.1007/s00521-007-0126-6 doi (DE-627)OLC2025581033 (DE-He213)s00521-007-0126-6-p DE-627 ger DE-627 rakwb eng 004 VZ Chen, Dingguo verfasserin aut On near optimal neural control of multiple-input nonlinear systems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective. Uncertain nonlinear system Multiple input nonlinear system Neural network Optimal control Neural control Switching manifold Yang, Jiaben aut Mohler, Ronald R. aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 4 vom: 30. Mai, Seite 327-337 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:4 day:30 month:05 pages:327-337 https://doi.org/10.1007/s00521-007-0126-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 4 30 05 327-337 |
allfieldsSound |
10.1007/s00521-007-0126-6 doi (DE-627)OLC2025581033 (DE-He213)s00521-007-0126-6-p DE-627 ger DE-627 rakwb eng 004 VZ Chen, Dingguo verfasserin aut On near optimal neural control of multiple-input nonlinear systems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2007 Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective. Uncertain nonlinear system Multiple input nonlinear system Neural network Optimal control Neural control Switching manifold Yang, Jiaben aut Mohler, Ronald R. aut Enthalten in Neural computing & applications Springer-Verlag, 1993 17(2007), 4 vom: 30. Mai, Seite 327-337 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:17 year:2007 number:4 day:30 month:05 pages:327-337 https://doi.org/10.1007/s00521-007-0126-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 17 2007 4 30 05 327-337 |
language |
English |
source |
Enthalten in Neural computing & applications 17(2007), 4 vom: 30. Mai, Seite 327-337 volume:17 year:2007 number:4 day:30 month:05 pages:327-337 |
sourceStr |
Enthalten in Neural computing & applications 17(2007), 4 vom: 30. Mai, Seite 327-337 volume:17 year:2007 number:4 day:30 month:05 pages:327-337 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Uncertain nonlinear system Multiple input nonlinear system Neural network Optimal control Neural control Switching manifold |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Chen, Dingguo @@aut@@ Yang, Jiaben @@aut@@ Mohler, Ronald R. @@aut@@ |
publishDateDaySort_date |
2007-05-30T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2025581033 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025581033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114436.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-007-0126-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025581033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-007-0126-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Dingguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On near optimal neural control of multiple-input nonlinear systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertain nonlinear system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple input nonlinear system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switching manifold</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jiaben</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohler, Ronald R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">17(2007), 4 vom: 30. Mai, Seite 327-337</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:327-337</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-007-0126-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2007</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">05</subfield><subfield code="h">327-337</subfield></datafield></record></collection>
|
author |
Chen, Dingguo |
spellingShingle |
Chen, Dingguo ddc 004 misc Uncertain nonlinear system misc Multiple input nonlinear system misc Neural network misc Optimal control misc Neural control misc Switching manifold On near optimal neural control of multiple-input nonlinear systems |
authorStr |
Chen, Dingguo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ On near optimal neural control of multiple-input nonlinear systems Uncertain nonlinear system Multiple input nonlinear system Neural network Optimal control Neural control Switching manifold |
topic |
ddc 004 misc Uncertain nonlinear system misc Multiple input nonlinear system misc Neural network misc Optimal control misc Neural control misc Switching manifold |
topic_unstemmed |
ddc 004 misc Uncertain nonlinear system misc Multiple input nonlinear system misc Neural network misc Optimal control misc Neural control misc Switching manifold |
topic_browse |
ddc 004 misc Uncertain nonlinear system misc Multiple input nonlinear system misc Neural network misc Optimal control misc Neural control misc Switching manifold |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
On near optimal neural control of multiple-input nonlinear systems |
ctrlnum |
(DE-627)OLC2025581033 (DE-He213)s00521-007-0126-6-p |
title_full |
On near optimal neural control of multiple-input nonlinear systems |
author_sort |
Chen, Dingguo |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
327 |
author_browse |
Chen, Dingguo Yang, Jiaben Mohler, Ronald R. |
container_volume |
17 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Chen, Dingguo |
doi_str_mv |
10.1007/s00521-007-0126-6 |
dewey-full |
004 |
title_sort |
on near optimal neural control of multiple-input nonlinear systems |
title_auth |
On near optimal neural control of multiple-input nonlinear systems |
abstract |
Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective. © Springer-Verlag London Limited 2007 |
abstractGer |
Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective. © Springer-Verlag London Limited 2007 |
abstract_unstemmed |
Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective. © Springer-Verlag London Limited 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_100 GBV_ILN_152 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 |
container_issue |
4 |
title_short |
On near optimal neural control of multiple-input nonlinear systems |
url |
https://doi.org/10.1007/s00521-007-0126-6 |
remote_bool |
false |
author2 |
Yang, Jiaben Mohler, Ronald R. |
author2Str |
Yang, Jiaben Mohler, Ronald R. |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-007-0126-6 |
up_date |
2024-07-04T01:36:24.439Z |
_version_ |
1803610472515108864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025581033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114436.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-007-0126-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025581033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-007-0126-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Dingguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On near optimal neural control of multiple-input nonlinear systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It has been a common consensus that general techniques for stabilization of nonlinear systems are available only for some special classes of nonlinear systems. Control design for nonlinear systems with uncertain components is usually carried out on a per system basis, especially when physical control constraints, and certain control performance measures such as optimum time control are imposed. Elegant adaptive control techniques are difficult to apply to this type of problems. A new neural network based control design is proposed and presented in this paper to deal with a special class of uncertain nonlinear systems with multiple inputs. The desired system dynamics are analyzed and utilized in the process of the proposed intelligent control design. The theoretical results are provided to justify the design procedures. The simulation study is conducted on a second-order bilinear system with two inputs and uncertainties on its parameters. The simulation results indicate that the proposed design approach is effective.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertain nonlinear system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple input nonlinear system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switching manifold</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jiaben</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohler, Ronald R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">17(2007), 4 vom: 30. Mai, Seite 327-337</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:327-337</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-007-0126-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2007</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">05</subfield><subfield code="h">327-337</subfield></datafield></record></collection>
|
score |
7.3993244 |