Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays
Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov func...
Ausführliche Beschreibung
Autor*in: |
Liu, Yiguang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Limited 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer-Verlag, 1993, 21(2011), 5 vom: 07. Juni, Seite 821-831 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2011 ; number:5 ; day:07 ; month:06 ; pages:821-831 |
Links: |
---|
DOI / URN: |
10.1007/s00521-011-0655-x |
---|
Katalog-ID: |
OLC2025585683 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025585683 | ||
003 | DE-627 | ||
005 | 20230502114459.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-011-0655-x |2 doi | |
035 | |a (DE-627)OLC2025585683 | ||
035 | |a (DE-He213)s00521-011-0655-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Liu, Yiguang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Limited 2011 | ||
520 | |a Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses. | ||
650 | 4 | |a Impulsive Hopfield neural networks (IHNNs) | |
650 | 4 | |a Almost periodic solution | |
650 | 4 | |a Finite distributed delays | |
650 | 4 | |a Fixed point theorems | |
700 | 1 | |a Huang, Zengxi |4 aut | |
700 | 1 | |a Chen, Liping |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer-Verlag, 1993 |g 21(2011), 5 vom: 07. Juni, Seite 821-831 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2011 |g number:5 |g day:07 |g month:06 |g pages:821-831 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-011-0655-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 21 |j 2011 |e 5 |b 07 |c 06 |h 821-831 |
author_variant |
y l yl z h zh l c lc |
---|---|
matchkey_str |
article:09410643:2011----::loteidcouinfmusvhpilnuantokwtf |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s00521-011-0655-x doi (DE-627)OLC2025585683 (DE-He213)s00521-011-0655-x-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Yiguang verfasserin aut Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses. Impulsive Hopfield neural networks (IHNNs) Almost periodic solution Finite distributed delays Fixed point theorems Huang, Zengxi aut Chen, Liping aut Enthalten in Neural computing & applications Springer-Verlag, 1993 21(2011), 5 vom: 07. Juni, Seite 821-831 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:21 year:2011 number:5 day:07 month:06 pages:821-831 https://doi.org/10.1007/s00521-011-0655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 21 2011 5 07 06 821-831 |
spelling |
10.1007/s00521-011-0655-x doi (DE-627)OLC2025585683 (DE-He213)s00521-011-0655-x-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Yiguang verfasserin aut Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses. Impulsive Hopfield neural networks (IHNNs) Almost periodic solution Finite distributed delays Fixed point theorems Huang, Zengxi aut Chen, Liping aut Enthalten in Neural computing & applications Springer-Verlag, 1993 21(2011), 5 vom: 07. Juni, Seite 821-831 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:21 year:2011 number:5 day:07 month:06 pages:821-831 https://doi.org/10.1007/s00521-011-0655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 21 2011 5 07 06 821-831 |
allfields_unstemmed |
10.1007/s00521-011-0655-x doi (DE-627)OLC2025585683 (DE-He213)s00521-011-0655-x-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Yiguang verfasserin aut Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses. Impulsive Hopfield neural networks (IHNNs) Almost periodic solution Finite distributed delays Fixed point theorems Huang, Zengxi aut Chen, Liping aut Enthalten in Neural computing & applications Springer-Verlag, 1993 21(2011), 5 vom: 07. Juni, Seite 821-831 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:21 year:2011 number:5 day:07 month:06 pages:821-831 https://doi.org/10.1007/s00521-011-0655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 21 2011 5 07 06 821-831 |
allfieldsGer |
10.1007/s00521-011-0655-x doi (DE-627)OLC2025585683 (DE-He213)s00521-011-0655-x-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Yiguang verfasserin aut Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses. Impulsive Hopfield neural networks (IHNNs) Almost periodic solution Finite distributed delays Fixed point theorems Huang, Zengxi aut Chen, Liping aut Enthalten in Neural computing & applications Springer-Verlag, 1993 21(2011), 5 vom: 07. Juni, Seite 821-831 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:21 year:2011 number:5 day:07 month:06 pages:821-831 https://doi.org/10.1007/s00521-011-0655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 21 2011 5 07 06 821-831 |
allfieldsSound |
10.1007/s00521-011-0655-x doi (DE-627)OLC2025585683 (DE-He213)s00521-011-0655-x-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Yiguang verfasserin aut Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses. Impulsive Hopfield neural networks (IHNNs) Almost periodic solution Finite distributed delays Fixed point theorems Huang, Zengxi aut Chen, Liping aut Enthalten in Neural computing & applications Springer-Verlag, 1993 21(2011), 5 vom: 07. Juni, Seite 821-831 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:21 year:2011 number:5 day:07 month:06 pages:821-831 https://doi.org/10.1007/s00521-011-0655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 AR 21 2011 5 07 06 821-831 |
language |
English |
source |
Enthalten in Neural computing & applications 21(2011), 5 vom: 07. Juni, Seite 821-831 volume:21 year:2011 number:5 day:07 month:06 pages:821-831 |
sourceStr |
Enthalten in Neural computing & applications 21(2011), 5 vom: 07. Juni, Seite 821-831 volume:21 year:2011 number:5 day:07 month:06 pages:821-831 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Impulsive Hopfield neural networks (IHNNs) Almost periodic solution Finite distributed delays Fixed point theorems |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Liu, Yiguang @@aut@@ Huang, Zengxi @@aut@@ Chen, Liping @@aut@@ |
publishDateDaySort_date |
2011-06-07T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2025585683 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025585683</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114459.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-011-0655-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025585683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-011-0655-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yiguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impulsive Hopfield neural networks (IHNNs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Almost periodic solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite distributed delays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed point theorems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zengxi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Liping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">21(2011), 5 vom: 07. Juni, Seite 821-831</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:5</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:821-831</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-011-0655-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2011</subfield><subfield code="e">5</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield><subfield code="h">821-831</subfield></datafield></record></collection>
|
author |
Liu, Yiguang |
spellingShingle |
Liu, Yiguang ddc 004 misc Impulsive Hopfield neural networks (IHNNs) misc Almost periodic solution misc Finite distributed delays misc Fixed point theorems Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays |
authorStr |
Liu, Yiguang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays Impulsive Hopfield neural networks (IHNNs) Almost periodic solution Finite distributed delays Fixed point theorems |
topic |
ddc 004 misc Impulsive Hopfield neural networks (IHNNs) misc Almost periodic solution misc Finite distributed delays misc Fixed point theorems |
topic_unstemmed |
ddc 004 misc Impulsive Hopfield neural networks (IHNNs) misc Almost periodic solution misc Finite distributed delays misc Fixed point theorems |
topic_browse |
ddc 004 misc Impulsive Hopfield neural networks (IHNNs) misc Almost periodic solution misc Finite distributed delays misc Fixed point theorems |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays |
ctrlnum |
(DE-627)OLC2025585683 (DE-He213)s00521-011-0655-x-p |
title_full |
Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays |
author_sort |
Liu, Yiguang |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
821 |
author_browse |
Liu, Yiguang Huang, Zengxi Chen, Liping |
container_volume |
21 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Liu, Yiguang |
doi_str_mv |
10.1007/s00521-011-0655-x |
dewey-full |
004 |
title_sort |
almost periodic solution of impulsive hopfield neural networks with finite distributed delays |
title_auth |
Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays |
abstract |
Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses. © Springer-Verlag London Limited 2011 |
abstractGer |
Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses. © Springer-Verlag London Limited 2011 |
abstract_unstemmed |
Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses. © Springer-Verlag London Limited 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4277 |
container_issue |
5 |
title_short |
Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays |
url |
https://doi.org/10.1007/s00521-011-0655-x |
remote_bool |
false |
author2 |
Huang, Zengxi Chen, Liping |
author2Str |
Huang, Zengxi Chen, Liping |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-011-0655-x |
up_date |
2024-07-04T01:37:15.279Z |
_version_ |
1803610525826809856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025585683</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114459.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-011-0655-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025585683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-011-0655-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yiguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By the definition of piecewise almost periodic functions, this paper investigates the existence and stability of a discontinuous almost periodic solution of the impulsive Hopfield neural networks with finite distributed delays and periodic impulses, using fixed point theorems, Lyapunov functional, and some inequality techniques. Compared with known relevant results mainly concentrating on continuous neural networks, the obtained criteria consider impulse effects. Moreover, it does not use Cauchy matrix, and the corresponding hypotheses about linear impulse systems which are often used in the reference. The obtained criteria are easily applicable and checkable, and an illustrative example with simulations shows this. Furthermore, the proposed results are applicable to some other networks with periodic impulses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impulsive Hopfield neural networks (IHNNs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Almost periodic solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite distributed delays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed point theorems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zengxi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Liping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">21(2011), 5 vom: 07. Juni, Seite 821-831</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:5</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:821-831</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-011-0655-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2011</subfield><subfield code="e">5</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield><subfield code="h">821-831</subfield></datafield></record></collection>
|
score |
7.40059 |