Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system
Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC...
Ausführliche Beschreibung
Autor*in: |
Hsu, Chun-Fei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Limited 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer-Verlag, 1993, 22(2012), Suppl 1 vom: 14. Sept., Seite 421-433 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2012 ; number:Suppl 1 ; day:14 ; month:09 ; pages:421-433 |
Links: |
---|
DOI / URN: |
10.1007/s00521-012-1154-4 |
---|
Katalog-ID: |
OLC2025586825 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025586825 | ||
003 | DE-627 | ||
005 | 20230502114521.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-012-1154-4 |2 doi | |
035 | |a (DE-627)OLC2025586825 | ||
035 | |a (DE-He213)s00521-012-1154-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Hsu, Chun-Fei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Limited 2012 | ||
520 | |a Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning. | ||
650 | 4 | |a Hermite neural network | |
650 | 4 | |a Adaptive control | |
650 | 4 | |a Neural control | |
650 | 4 | |a Coupled chaotic system | |
650 | 4 | |a Synchronization | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer-Verlag, 1993 |g 22(2012), Suppl 1 vom: 14. Sept., Seite 421-433 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2012 |g number:Suppl 1 |g day:14 |g month:09 |g pages:421-433 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-012-1154-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 22 |j 2012 |e Suppl 1 |b 14 |c 09 |h 421-433 |
author_variant |
c f h cfh |
---|---|
matchkey_str |
article:09410643:2012----::emtnuantokaeaatvcnrloaopenn |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s00521-012-1154-4 doi (DE-627)OLC2025586825 (DE-He213)s00521-012-1154-4-p DE-627 ger DE-627 rakwb eng 004 VZ Hsu, Chun-Fei verfasserin aut Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2012 Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning. Hermite neural network Adaptive control Neural control Coupled chaotic system Synchronization Enthalten in Neural computing & applications Springer-Verlag, 1993 22(2012), Suppl 1 vom: 14. Sept., Seite 421-433 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:22 year:2012 number:Suppl 1 day:14 month:09 pages:421-433 https://doi.org/10.1007/s00521-012-1154-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 22 2012 Suppl 1 14 09 421-433 |
spelling |
10.1007/s00521-012-1154-4 doi (DE-627)OLC2025586825 (DE-He213)s00521-012-1154-4-p DE-627 ger DE-627 rakwb eng 004 VZ Hsu, Chun-Fei verfasserin aut Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2012 Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning. Hermite neural network Adaptive control Neural control Coupled chaotic system Synchronization Enthalten in Neural computing & applications Springer-Verlag, 1993 22(2012), Suppl 1 vom: 14. Sept., Seite 421-433 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:22 year:2012 number:Suppl 1 day:14 month:09 pages:421-433 https://doi.org/10.1007/s00521-012-1154-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 22 2012 Suppl 1 14 09 421-433 |
allfields_unstemmed |
10.1007/s00521-012-1154-4 doi (DE-627)OLC2025586825 (DE-He213)s00521-012-1154-4-p DE-627 ger DE-627 rakwb eng 004 VZ Hsu, Chun-Fei verfasserin aut Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2012 Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning. Hermite neural network Adaptive control Neural control Coupled chaotic system Synchronization Enthalten in Neural computing & applications Springer-Verlag, 1993 22(2012), Suppl 1 vom: 14. Sept., Seite 421-433 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:22 year:2012 number:Suppl 1 day:14 month:09 pages:421-433 https://doi.org/10.1007/s00521-012-1154-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 22 2012 Suppl 1 14 09 421-433 |
allfieldsGer |
10.1007/s00521-012-1154-4 doi (DE-627)OLC2025586825 (DE-He213)s00521-012-1154-4-p DE-627 ger DE-627 rakwb eng 004 VZ Hsu, Chun-Fei verfasserin aut Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2012 Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning. Hermite neural network Adaptive control Neural control Coupled chaotic system Synchronization Enthalten in Neural computing & applications Springer-Verlag, 1993 22(2012), Suppl 1 vom: 14. Sept., Seite 421-433 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:22 year:2012 number:Suppl 1 day:14 month:09 pages:421-433 https://doi.org/10.1007/s00521-012-1154-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 22 2012 Suppl 1 14 09 421-433 |
allfieldsSound |
10.1007/s00521-012-1154-4 doi (DE-627)OLC2025586825 (DE-He213)s00521-012-1154-4-p DE-627 ger DE-627 rakwb eng 004 VZ Hsu, Chun-Fei verfasserin aut Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2012 Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning. Hermite neural network Adaptive control Neural control Coupled chaotic system Synchronization Enthalten in Neural computing & applications Springer-Verlag, 1993 22(2012), Suppl 1 vom: 14. Sept., Seite 421-433 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:22 year:2012 number:Suppl 1 day:14 month:09 pages:421-433 https://doi.org/10.1007/s00521-012-1154-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 22 2012 Suppl 1 14 09 421-433 |
language |
English |
source |
Enthalten in Neural computing & applications 22(2012), Suppl 1 vom: 14. Sept., Seite 421-433 volume:22 year:2012 number:Suppl 1 day:14 month:09 pages:421-433 |
sourceStr |
Enthalten in Neural computing & applications 22(2012), Suppl 1 vom: 14. Sept., Seite 421-433 volume:22 year:2012 number:Suppl 1 day:14 month:09 pages:421-433 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hermite neural network Adaptive control Neural control Coupled chaotic system Synchronization |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Hsu, Chun-Fei @@aut@@ |
publishDateDaySort_date |
2012-09-14T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2025586825 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025586825</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114521.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-012-1154-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025586825</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-012-1154-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsu, Chun-Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermite neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled chaotic system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synchronization</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">22(2012), Suppl 1 vom: 14. Sept., Seite 421-433</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:421-433</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-012-1154-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2012</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">14</subfield><subfield code="c">09</subfield><subfield code="h">421-433</subfield></datafield></record></collection>
|
author |
Hsu, Chun-Fei |
spellingShingle |
Hsu, Chun-Fei ddc 004 misc Hermite neural network misc Adaptive control misc Neural control misc Coupled chaotic system misc Synchronization Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system |
authorStr |
Hsu, Chun-Fei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system Hermite neural network Adaptive control Neural control Coupled chaotic system Synchronization |
topic |
ddc 004 misc Hermite neural network misc Adaptive control misc Neural control misc Coupled chaotic system misc Synchronization |
topic_unstemmed |
ddc 004 misc Hermite neural network misc Adaptive control misc Neural control misc Coupled chaotic system misc Synchronization |
topic_browse |
ddc 004 misc Hermite neural network misc Adaptive control misc Neural control misc Coupled chaotic system misc Synchronization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system |
ctrlnum |
(DE-627)OLC2025586825 (DE-He213)s00521-012-1154-4-p |
title_full |
Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system |
author_sort |
Hsu, Chun-Fei |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
421 |
author_browse |
Hsu, Chun-Fei |
container_volume |
22 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Hsu, Chun-Fei |
doi_str_mv |
10.1007/s00521-012-1154-4 |
dewey-full |
004 |
title_sort |
hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system |
title_auth |
Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system |
abstract |
Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning. © Springer-Verlag London Limited 2012 |
abstractGer |
Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning. © Springer-Verlag London Limited 2012 |
abstract_unstemmed |
Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning. © Springer-Verlag London Limited 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 |
container_issue |
Suppl 1 |
title_short |
Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system |
url |
https://doi.org/10.1007/s00521-012-1154-4 |
remote_bool |
false |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-012-1154-4 |
up_date |
2024-07-04T01:37:27.688Z |
_version_ |
1803610538837540864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025586825</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114521.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-012-1154-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025586825</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-012-1154-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsu, Chun-Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermite neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled chaotic system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synchronization</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">22(2012), Suppl 1 vom: 14. Sept., Seite 421-433</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:421-433</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-012-1154-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2012</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">14</subfield><subfield code="c">09</subfield><subfield code="h">421-433</subfield></datafield></record></collection>
|
score |
7.4008074 |