A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205
Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy...
Ausführliche Beschreibung
Autor*in: |
Ghorai, Ganesh [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Natural Computing Applications Forum 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer London, 1993, 30(2016), 5 vom: 19. Dez., Seite 1569-1572 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2016 ; number:5 ; day:19 ; month:12 ; pages:1569-1572 |
Links: |
---|
DOI / URN: |
10.1007/s00521-016-2771-0 |
---|
Katalog-ID: |
OLC2025607385 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025607385 | ||
003 | DE-627 | ||
005 | 20230502114753.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-016-2771-0 |2 doi | |
035 | |a (DE-627)OLC2025607385 | ||
035 | |a (DE-He213)s00521-016-2771-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Ghorai, Ganesh |e verfasserin |4 aut | |
245 | 1 | 0 | |a A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Natural Computing Applications Forum 2016 | ||
520 | |a Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs. | ||
650 | 4 | |a Bipolar fuzzy sets | |
650 | 4 | |a Counterexample | |
650 | 4 | |a Generalized regular bipolar fuzzy graphs | |
700 | 1 | |a Pal, Madhumangal |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer London, 1993 |g 30(2016), 5 vom: 19. Dez., Seite 1569-1572 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2016 |g number:5 |g day:19 |g month:12 |g pages:1569-1572 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-016-2771-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 30 |j 2016 |e 5 |b 19 |c 12 |h 1569-1572 |
author_variant |
g g gg m p mp |
---|---|
matchkey_str |
article:09410643:2016----::ntorglrioafzyrpserloptnadpl |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00521-016-2771-0 doi (DE-627)OLC2025607385 (DE-He213)s00521-016-2771-0-p DE-627 ger DE-627 rakwb eng 004 VZ Ghorai, Ganesh verfasserin aut A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Natural Computing Applications Forum 2016 Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs. Bipolar fuzzy sets Counterexample Generalized regular bipolar fuzzy graphs Pal, Madhumangal aut Enthalten in Neural computing & applications Springer London, 1993 30(2016), 5 vom: 19. Dez., Seite 1569-1572 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:30 year:2016 number:5 day:19 month:12 pages:1569-1572 https://doi.org/10.1007/s00521-016-2771-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 30 2016 5 19 12 1569-1572 |
spelling |
10.1007/s00521-016-2771-0 doi (DE-627)OLC2025607385 (DE-He213)s00521-016-2771-0-p DE-627 ger DE-627 rakwb eng 004 VZ Ghorai, Ganesh verfasserin aut A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Natural Computing Applications Forum 2016 Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs. Bipolar fuzzy sets Counterexample Generalized regular bipolar fuzzy graphs Pal, Madhumangal aut Enthalten in Neural computing & applications Springer London, 1993 30(2016), 5 vom: 19. Dez., Seite 1569-1572 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:30 year:2016 number:5 day:19 month:12 pages:1569-1572 https://doi.org/10.1007/s00521-016-2771-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 30 2016 5 19 12 1569-1572 |
allfields_unstemmed |
10.1007/s00521-016-2771-0 doi (DE-627)OLC2025607385 (DE-He213)s00521-016-2771-0-p DE-627 ger DE-627 rakwb eng 004 VZ Ghorai, Ganesh verfasserin aut A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Natural Computing Applications Forum 2016 Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs. Bipolar fuzzy sets Counterexample Generalized regular bipolar fuzzy graphs Pal, Madhumangal aut Enthalten in Neural computing & applications Springer London, 1993 30(2016), 5 vom: 19. Dez., Seite 1569-1572 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:30 year:2016 number:5 day:19 month:12 pages:1569-1572 https://doi.org/10.1007/s00521-016-2771-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 30 2016 5 19 12 1569-1572 |
allfieldsGer |
10.1007/s00521-016-2771-0 doi (DE-627)OLC2025607385 (DE-He213)s00521-016-2771-0-p DE-627 ger DE-627 rakwb eng 004 VZ Ghorai, Ganesh verfasserin aut A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Natural Computing Applications Forum 2016 Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs. Bipolar fuzzy sets Counterexample Generalized regular bipolar fuzzy graphs Pal, Madhumangal aut Enthalten in Neural computing & applications Springer London, 1993 30(2016), 5 vom: 19. Dez., Seite 1569-1572 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:30 year:2016 number:5 day:19 month:12 pages:1569-1572 https://doi.org/10.1007/s00521-016-2771-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 30 2016 5 19 12 1569-1572 |
allfieldsSound |
10.1007/s00521-016-2771-0 doi (DE-627)OLC2025607385 (DE-He213)s00521-016-2771-0-p DE-627 ger DE-627 rakwb eng 004 VZ Ghorai, Ganesh verfasserin aut A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Natural Computing Applications Forum 2016 Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs. Bipolar fuzzy sets Counterexample Generalized regular bipolar fuzzy graphs Pal, Madhumangal aut Enthalten in Neural computing & applications Springer London, 1993 30(2016), 5 vom: 19. Dez., Seite 1569-1572 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:30 year:2016 number:5 day:19 month:12 pages:1569-1572 https://doi.org/10.1007/s00521-016-2771-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 AR 30 2016 5 19 12 1569-1572 |
language |
English |
source |
Enthalten in Neural computing & applications 30(2016), 5 vom: 19. Dez., Seite 1569-1572 volume:30 year:2016 number:5 day:19 month:12 pages:1569-1572 |
sourceStr |
Enthalten in Neural computing & applications 30(2016), 5 vom: 19. Dez., Seite 1569-1572 volume:30 year:2016 number:5 day:19 month:12 pages:1569-1572 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bipolar fuzzy sets Counterexample Generalized regular bipolar fuzzy graphs |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Ghorai, Ganesh @@aut@@ Pal, Madhumangal @@aut@@ |
publishDateDaySort_date |
2016-12-19T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2025607385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025607385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114753.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-016-2771-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025607385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-016-2771-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghorai, Ganesh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Natural Computing Applications Forum 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Counterexample</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized regular bipolar fuzzy graphs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Madhumangal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">30(2016), 5 vom: 19. Dez., Seite 1569-1572</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">day:19</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1569-1572</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-016-2771-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="b">19</subfield><subfield code="c">12</subfield><subfield code="h">1569-1572</subfield></datafield></record></collection>
|
author |
Ghorai, Ganesh |
spellingShingle |
Ghorai, Ganesh ddc 004 misc Bipolar fuzzy sets misc Counterexample misc Generalized regular bipolar fuzzy graphs A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 |
authorStr |
Ghorai, Ganesh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 Bipolar fuzzy sets Counterexample Generalized regular bipolar fuzzy graphs |
topic |
ddc 004 misc Bipolar fuzzy sets misc Counterexample misc Generalized regular bipolar fuzzy graphs |
topic_unstemmed |
ddc 004 misc Bipolar fuzzy sets misc Counterexample misc Generalized regular bipolar fuzzy graphs |
topic_browse |
ddc 004 misc Bipolar fuzzy sets misc Counterexample misc Generalized regular bipolar fuzzy graphs |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 |
ctrlnum |
(DE-627)OLC2025607385 (DE-He213)s00521-016-2771-0-p |
title_full |
A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 |
author_sort |
Ghorai, Ganesh |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1569 |
author_browse |
Ghorai, Ganesh Pal, Madhumangal |
container_volume |
30 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Ghorai, Ganesh |
doi_str_mv |
10.1007/s00521-016-2771-0 |
dewey-full |
004 |
title_sort |
a note on “regular bipolar fuzzy graphs” neural computing and applications 21(1) (2012) 197–205 |
title_auth |
A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 |
abstract |
Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs. © The Natural Computing Applications Forum 2016 |
abstractGer |
Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs. © The Natural Computing Applications Forum 2016 |
abstract_unstemmed |
Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs. © The Natural Computing Applications Forum 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4046 GBV_ILN_4277 |
container_issue |
5 |
title_short |
A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205 |
url |
https://doi.org/10.1007/s00521-016-2771-0 |
remote_bool |
false |
author2 |
Pal, Madhumangal |
author2Str |
Pal, Madhumangal |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-016-2771-0 |
up_date |
2024-07-04T01:41:20.966Z |
_version_ |
1803610783445155840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025607385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114753.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-016-2771-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025607385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-016-2771-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghorai, Ganesh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on “Regular bipolar fuzzy graphs” Neural Computing and Applications 21(1) (2012) 197–205</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Natural Computing Applications Forum 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this note, we show by examples that Definitions 3.3, 3.5, Propositions 3.9, 3.10 and Theorem 3.17 in the paper by Akram and Dudek (Neural Comput Appl 21(1):197–205, 2012) contain some flaws, and then, we presented the updated results. Hence, we introduce generalized regular bipolar fuzzy graphs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Counterexample</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized regular bipolar fuzzy graphs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Madhumangal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">30(2016), 5 vom: 19. Dez., Seite 1569-1572</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">day:19</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1569-1572</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-016-2771-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="b">19</subfield><subfield code="c">12</subfield><subfield code="h">1569-1572</subfield></datafield></record></collection>
|
score |
7.4000044 |