A Q-learning-based approach for virtual network embedding in data center
Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is t...
Ausführliche Beschreibung
Autor*in: |
Yuan, Ying [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer London, 1993, 32(2019), 7 vom: 29. Juli, Seite 1995-2004 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2019 ; number:7 ; day:29 ; month:07 ; pages:1995-2004 |
Links: |
---|
DOI / URN: |
10.1007/s00521-019-04376-6 |
---|
Katalog-ID: |
OLC2025617763 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025617763 | ||
003 | DE-627 | ||
005 | 20230504125834.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-019-04376-6 |2 doi | |
035 | |a (DE-627)OLC2025617763 | ||
035 | |a (DE-He213)s00521-019-04376-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Yuan, Ying |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Q-learning-based approach for virtual network embedding in data center |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2019 | ||
520 | |a Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms. | ||
650 | 4 | |a Virtual tenant network | |
650 | 4 | |a Network virtualization | |
650 | 4 | |a Virtual network embedding | |
650 | 4 | |a Virtual data center | |
650 | 4 | |a Q-learning algorithm | |
700 | 1 | |a Tian, Zejie |4 aut | |
700 | 1 | |a Wang, Cong |4 aut | |
700 | 1 | |a Zheng, Fanghui |4 aut | |
700 | 1 | |a Lv, Yanxia |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer London, 1993 |g 32(2019), 7 vom: 29. Juli, Seite 1995-2004 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2019 |g number:7 |g day:29 |g month:07 |g pages:1995-2004 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-019-04376-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 32 |j 2019 |e 7 |b 29 |c 07 |h 1995-2004 |
author_variant |
y y yy z t zt c w cw f z fz y l yl |
---|---|
matchkey_str |
article:09410643:2019----::qerigaeapocfritantokme |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00521-019-04376-6 doi (DE-627)OLC2025617763 (DE-He213)s00521-019-04376-6-p DE-627 ger DE-627 rakwb eng 004 VZ Yuan, Ying verfasserin aut A Q-learning-based approach for virtual network embedding in data center 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms. Virtual tenant network Network virtualization Virtual network embedding Virtual data center Q-learning algorithm Tian, Zejie aut Wang, Cong aut Zheng, Fanghui aut Lv, Yanxia aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 29. Juli, Seite 1995-2004 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:29 month:07 pages:1995-2004 https://doi.org/10.1007/s00521-019-04376-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 29 07 1995-2004 |
spelling |
10.1007/s00521-019-04376-6 doi (DE-627)OLC2025617763 (DE-He213)s00521-019-04376-6-p DE-627 ger DE-627 rakwb eng 004 VZ Yuan, Ying verfasserin aut A Q-learning-based approach for virtual network embedding in data center 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms. Virtual tenant network Network virtualization Virtual network embedding Virtual data center Q-learning algorithm Tian, Zejie aut Wang, Cong aut Zheng, Fanghui aut Lv, Yanxia aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 29. Juli, Seite 1995-2004 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:29 month:07 pages:1995-2004 https://doi.org/10.1007/s00521-019-04376-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 29 07 1995-2004 |
allfields_unstemmed |
10.1007/s00521-019-04376-6 doi (DE-627)OLC2025617763 (DE-He213)s00521-019-04376-6-p DE-627 ger DE-627 rakwb eng 004 VZ Yuan, Ying verfasserin aut A Q-learning-based approach for virtual network embedding in data center 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms. Virtual tenant network Network virtualization Virtual network embedding Virtual data center Q-learning algorithm Tian, Zejie aut Wang, Cong aut Zheng, Fanghui aut Lv, Yanxia aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 29. Juli, Seite 1995-2004 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:29 month:07 pages:1995-2004 https://doi.org/10.1007/s00521-019-04376-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 29 07 1995-2004 |
allfieldsGer |
10.1007/s00521-019-04376-6 doi (DE-627)OLC2025617763 (DE-He213)s00521-019-04376-6-p DE-627 ger DE-627 rakwb eng 004 VZ Yuan, Ying verfasserin aut A Q-learning-based approach for virtual network embedding in data center 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms. Virtual tenant network Network virtualization Virtual network embedding Virtual data center Q-learning algorithm Tian, Zejie aut Wang, Cong aut Zheng, Fanghui aut Lv, Yanxia aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 29. Juli, Seite 1995-2004 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:29 month:07 pages:1995-2004 https://doi.org/10.1007/s00521-019-04376-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 29 07 1995-2004 |
allfieldsSound |
10.1007/s00521-019-04376-6 doi (DE-627)OLC2025617763 (DE-He213)s00521-019-04376-6-p DE-627 ger DE-627 rakwb eng 004 VZ Yuan, Ying verfasserin aut A Q-learning-based approach for virtual network embedding in data center 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms. Virtual tenant network Network virtualization Virtual network embedding Virtual data center Q-learning algorithm Tian, Zejie aut Wang, Cong aut Zheng, Fanghui aut Lv, Yanxia aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 29. Juli, Seite 1995-2004 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:29 month:07 pages:1995-2004 https://doi.org/10.1007/s00521-019-04376-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 29 07 1995-2004 |
language |
English |
source |
Enthalten in Neural computing & applications 32(2019), 7 vom: 29. Juli, Seite 1995-2004 volume:32 year:2019 number:7 day:29 month:07 pages:1995-2004 |
sourceStr |
Enthalten in Neural computing & applications 32(2019), 7 vom: 29. Juli, Seite 1995-2004 volume:32 year:2019 number:7 day:29 month:07 pages:1995-2004 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Virtual tenant network Network virtualization Virtual network embedding Virtual data center Q-learning algorithm |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Yuan, Ying @@aut@@ Tian, Zejie @@aut@@ Wang, Cong @@aut@@ Zheng, Fanghui @@aut@@ Lv, Yanxia @@aut@@ |
publishDateDaySort_date |
2019-07-29T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2025617763 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025617763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504125834.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-019-04376-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025617763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-019-04376-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuan, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Q-learning-based approach for virtual network embedding in data center</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virtual tenant network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network virtualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virtual network embedding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virtual data center</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Q-learning algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Zejie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Cong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Fanghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Yanxia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">32(2019), 7 vom: 29. Juli, Seite 1995-2004</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">day:29</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1995-2004</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-019-04376-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="b">29</subfield><subfield code="c">07</subfield><subfield code="h">1995-2004</subfield></datafield></record></collection>
|
author |
Yuan, Ying |
spellingShingle |
Yuan, Ying ddc 004 misc Virtual tenant network misc Network virtualization misc Virtual network embedding misc Virtual data center misc Q-learning algorithm A Q-learning-based approach for virtual network embedding in data center |
authorStr |
Yuan, Ying |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ A Q-learning-based approach for virtual network embedding in data center Virtual tenant network Network virtualization Virtual network embedding Virtual data center Q-learning algorithm |
topic |
ddc 004 misc Virtual tenant network misc Network virtualization misc Virtual network embedding misc Virtual data center misc Q-learning algorithm |
topic_unstemmed |
ddc 004 misc Virtual tenant network misc Network virtualization misc Virtual network embedding misc Virtual data center misc Q-learning algorithm |
topic_browse |
ddc 004 misc Virtual tenant network misc Network virtualization misc Virtual network embedding misc Virtual data center misc Q-learning algorithm |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
A Q-learning-based approach for virtual network embedding in data center |
ctrlnum |
(DE-627)OLC2025617763 (DE-He213)s00521-019-04376-6-p |
title_full |
A Q-learning-based approach for virtual network embedding in data center |
author_sort |
Yuan, Ying |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1995 |
author_browse |
Yuan, Ying Tian, Zejie Wang, Cong Zheng, Fanghui Lv, Yanxia |
container_volume |
32 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Yuan, Ying |
doi_str_mv |
10.1007/s00521-019-04376-6 |
dewey-full |
004 |
title_sort |
a q-learning-based approach for virtual network embedding in data center |
title_auth |
A Q-learning-based approach for virtual network embedding in data center |
abstract |
Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
abstractGer |
Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
abstract_unstemmed |
Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
7 |
title_short |
A Q-learning-based approach for virtual network embedding in data center |
url |
https://doi.org/10.1007/s00521-019-04376-6 |
remote_bool |
false |
author2 |
Tian, Zejie Wang, Cong Zheng, Fanghui Lv, Yanxia |
author2Str |
Tian, Zejie Wang, Cong Zheng, Fanghui Lv, Yanxia |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-019-04376-6 |
up_date |
2024-07-04T01:43:24.654Z |
_version_ |
1803610913143521280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025617763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504125834.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-019-04376-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025617763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-019-04376-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuan, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Q-learning-based approach for virtual network embedding in data center</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Virtual network embedding (VNE) refers to allocating reasonable substrate network resources for virtual network (VN) requests that include computing resources and network resources, so as to obtain optimal income from leasing virtual resources. Such a way of providing virtual resources is the key technology of cloud computing and can greatly save the operating cost of enterprises and provide flexibility of application deployment. However, the existing VNE algorithms are mostly oriented to traditional stochastic network topologies. Due to the high connectivity and server density of data centers and the complexity of the user’s resource requirements, the traditional VNE algorithms suffer from low resource utilization rate and revenues in the VNE on the data centers. Different from the existing algorithms which are often based on heuristic algorithms, this paper proposes a VNE algorithm for data center topology based on the Q-learning algorithm which is a typical reinforcement learning method. The algorithm an agent for each VN designs a reward function related to the effect of virtual link embedding, which is used to update the Q-matrix through unsupervised learning process. Then, the agent can find the optimal embedding strategy based on the Q-table from each learning. Simulation results demonstrate that the proposed algorithm can improve the resource utilization ratio and obtain a better revenue/cost ratio of the substrate network compared with the traditional heuristic algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virtual tenant network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network virtualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virtual network embedding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virtual data center</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Q-learning algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Zejie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Cong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Fanghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Yanxia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">32(2019), 7 vom: 29. Juli, Seite 1995-2004</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">day:29</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1995-2004</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-019-04376-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="b">29</subfield><subfield code="c">07</subfield><subfield code="h">1995-2004</subfield></datafield></record></collection>
|
score |
7.4020844 |