Development of new agglomerative and performance evaluation models for classification
Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods...
Ausführliche Beschreibung
Autor*in: |
Vijaya Prabhagar, M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer London, 1993, 32(2019), 7 vom: 27. Juni, Seite 2589-2600 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2019 ; number:7 ; day:27 ; month:06 ; pages:2589-2600 |
Links: |
---|
DOI / URN: |
10.1007/s00521-019-04297-4 |
---|
Katalog-ID: |
OLC2025618123 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025618123 | ||
003 | DE-627 | ||
005 | 20230504125833.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-019-04297-4 |2 doi | |
035 | |a (DE-627)OLC2025618123 | ||
035 | |a (DE-He213)s00521-019-04297-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Vijaya Prabhagar, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development of new agglomerative and performance evaluation models for classification |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2019 | ||
520 | |a Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets. | ||
650 | 4 | |a Clustering analysis | |
650 | 4 | |a Hierarchical clustering | |
650 | 4 | |a Weighted clustering | |
650 | 4 | |a Neighbourhood clustering | |
650 | 4 | |a Structure strength | |
700 | 1 | |a Punniyamoorthy, M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer London, 1993 |g 32(2019), 7 vom: 27. Juni, Seite 2589-2600 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2019 |g number:7 |g day:27 |g month:06 |g pages:2589-2600 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-019-04297-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 32 |j 2019 |e 7 |b 27 |c 06 |h 2589-2600 |
author_variant |
p m v pm pmv m p mp |
---|---|
matchkey_str |
article:09410643:2019----::eeomnonwglmrtvadefraceautomd |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00521-019-04297-4 doi (DE-627)OLC2025618123 (DE-He213)s00521-019-04297-4-p DE-627 ger DE-627 rakwb eng 004 VZ Vijaya Prabhagar, M. verfasserin aut Development of new agglomerative and performance evaluation models for classification 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets. Clustering analysis Hierarchical clustering Weighted clustering Neighbourhood clustering Structure strength Punniyamoorthy, M. aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 27. Juni, Seite 2589-2600 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:27 month:06 pages:2589-2600 https://doi.org/10.1007/s00521-019-04297-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 27 06 2589-2600 |
spelling |
10.1007/s00521-019-04297-4 doi (DE-627)OLC2025618123 (DE-He213)s00521-019-04297-4-p DE-627 ger DE-627 rakwb eng 004 VZ Vijaya Prabhagar, M. verfasserin aut Development of new agglomerative and performance evaluation models for classification 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets. Clustering analysis Hierarchical clustering Weighted clustering Neighbourhood clustering Structure strength Punniyamoorthy, M. aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 27. Juni, Seite 2589-2600 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:27 month:06 pages:2589-2600 https://doi.org/10.1007/s00521-019-04297-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 27 06 2589-2600 |
allfields_unstemmed |
10.1007/s00521-019-04297-4 doi (DE-627)OLC2025618123 (DE-He213)s00521-019-04297-4-p DE-627 ger DE-627 rakwb eng 004 VZ Vijaya Prabhagar, M. verfasserin aut Development of new agglomerative and performance evaluation models for classification 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets. Clustering analysis Hierarchical clustering Weighted clustering Neighbourhood clustering Structure strength Punniyamoorthy, M. aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 27. Juni, Seite 2589-2600 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:27 month:06 pages:2589-2600 https://doi.org/10.1007/s00521-019-04297-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 27 06 2589-2600 |
allfieldsGer |
10.1007/s00521-019-04297-4 doi (DE-627)OLC2025618123 (DE-He213)s00521-019-04297-4-p DE-627 ger DE-627 rakwb eng 004 VZ Vijaya Prabhagar, M. verfasserin aut Development of new agglomerative and performance evaluation models for classification 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets. Clustering analysis Hierarchical clustering Weighted clustering Neighbourhood clustering Structure strength Punniyamoorthy, M. aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 27. Juni, Seite 2589-2600 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:27 month:06 pages:2589-2600 https://doi.org/10.1007/s00521-019-04297-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 27 06 2589-2600 |
allfieldsSound |
10.1007/s00521-019-04297-4 doi (DE-627)OLC2025618123 (DE-He213)s00521-019-04297-4-p DE-627 ger DE-627 rakwb eng 004 VZ Vijaya Prabhagar, M. verfasserin aut Development of new agglomerative and performance evaluation models for classification 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets. Clustering analysis Hierarchical clustering Weighted clustering Neighbourhood clustering Structure strength Punniyamoorthy, M. aut Enthalten in Neural computing & applications Springer London, 1993 32(2019), 7 vom: 27. Juni, Seite 2589-2600 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:32 year:2019 number:7 day:27 month:06 pages:2589-2600 https://doi.org/10.1007/s00521-019-04297-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 32 2019 7 27 06 2589-2600 |
language |
English |
source |
Enthalten in Neural computing & applications 32(2019), 7 vom: 27. Juni, Seite 2589-2600 volume:32 year:2019 number:7 day:27 month:06 pages:2589-2600 |
sourceStr |
Enthalten in Neural computing & applications 32(2019), 7 vom: 27. Juni, Seite 2589-2600 volume:32 year:2019 number:7 day:27 month:06 pages:2589-2600 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Clustering analysis Hierarchical clustering Weighted clustering Neighbourhood clustering Structure strength |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Vijaya Prabhagar, M. @@aut@@ Punniyamoorthy, M. @@aut@@ |
publishDateDaySort_date |
2019-06-27T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2025618123 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025618123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504125833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-019-04297-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025618123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-019-04297-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vijaya Prabhagar, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of new agglomerative and performance evaluation models for classification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neighbourhood clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure strength</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Punniyamoorthy, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">32(2019), 7 vom: 27. Juni, Seite 2589-2600</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2589-2600</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-019-04297-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="b">27</subfield><subfield code="c">06</subfield><subfield code="h">2589-2600</subfield></datafield></record></collection>
|
author |
Vijaya Prabhagar, M. |
spellingShingle |
Vijaya Prabhagar, M. ddc 004 misc Clustering analysis misc Hierarchical clustering misc Weighted clustering misc Neighbourhood clustering misc Structure strength Development of new agglomerative and performance evaluation models for classification |
authorStr |
Vijaya Prabhagar, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ Development of new agglomerative and performance evaluation models for classification Clustering analysis Hierarchical clustering Weighted clustering Neighbourhood clustering Structure strength |
topic |
ddc 004 misc Clustering analysis misc Hierarchical clustering misc Weighted clustering misc Neighbourhood clustering misc Structure strength |
topic_unstemmed |
ddc 004 misc Clustering analysis misc Hierarchical clustering misc Weighted clustering misc Neighbourhood clustering misc Structure strength |
topic_browse |
ddc 004 misc Clustering analysis misc Hierarchical clustering misc Weighted clustering misc Neighbourhood clustering misc Structure strength |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
Development of new agglomerative and performance evaluation models for classification |
ctrlnum |
(DE-627)OLC2025618123 (DE-He213)s00521-019-04297-4-p |
title_full |
Development of new agglomerative and performance evaluation models for classification |
author_sort |
Vijaya Prabhagar, M. |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
2589 |
author_browse |
Vijaya Prabhagar, M. Punniyamoorthy, M. |
container_volume |
32 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Vijaya Prabhagar, M. |
doi_str_mv |
10.1007/s00521-019-04297-4 |
dewey-full |
004 |
title_sort |
development of new agglomerative and performance evaluation models for classification |
title_auth |
Development of new agglomerative and performance evaluation models for classification |
abstract |
Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
abstractGer |
Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
abstract_unstemmed |
Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
7 |
title_short |
Development of new agglomerative and performance evaluation models for classification |
url |
https://doi.org/10.1007/s00521-019-04297-4 |
remote_bool |
false |
author2 |
Punniyamoorthy, M. |
author2Str |
Punniyamoorthy, M. |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-019-04297-4 |
up_date |
2024-07-04T01:43:29.069Z |
_version_ |
1803610917772984320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025618123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504125833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-019-04297-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025618123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-019-04297-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vijaya Prabhagar, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of new agglomerative and performance evaluation models for classification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neighbourhood clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure strength</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Punniyamoorthy, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">32(2019), 7 vom: 27. Juni, Seite 2589-2600</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2589-2600</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-019-04297-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="b">27</subfield><subfield code="c">06</subfield><subfield code="h">2589-2600</subfield></datafield></record></collection>
|
score |
7.4028063 |