Predicting product quality with backpropagation: A thermoplastic injection moulding case study
Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive...
Ausführliche Beschreibung
Autor*in: |
Smith, Alice E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1993 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Limited 1993 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer-Verlag, 1985, 8(1993), 4 vom: Juli, Seite 252-257 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:1993 ; number:4 ; month:07 ; pages:252-257 |
Links: |
---|
DOI / URN: |
10.1007/BF01748635 |
---|
Katalog-ID: |
OLC2025984820 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2025984820 | ||
003 | DE-627 | ||
005 | 20230401073209.0 | ||
007 | tu | ||
008 | 200820s1993 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01748635 |2 doi | |
035 | |a (DE-627)OLC2025984820 | ||
035 | |a (DE-He213)BF01748635-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Smith, Alice E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting product quality with backpropagation: A thermoplastic injection moulding case study |
264 | 1 | |c 1993 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Limited 1993 | ||
520 | |a Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling. | ||
650 | 4 | |a Artificial neural networks | |
650 | 4 | |a Backpropagation neural networks | |
650 | 4 | |a Injection moulding | |
650 | 4 | |a Process control | |
650 | 4 | |a Quality control | |
650 | 4 | |a Statistical process control | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer-Verlag, 1985 |g 8(1993), 4 vom: Juli, Seite 252-257 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:1993 |g number:4 |g month:07 |g pages:252-257 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01748635 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_132 | ||
912 | |a GBV_ILN_136 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2241 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 8 |j 1993 |e 4 |c 07 |h 252-257 |
author_variant |
a e s ae aes |
---|---|
matchkey_str |
article:02683768:1993----::rdcigrdcqaiyihakrpgtoahrolsiij |
hierarchy_sort_str |
1993 |
publishDate |
1993 |
allfields |
10.1007/BF01748635 doi (DE-627)OLC2025984820 (DE-He213)BF01748635-p DE-627 ger DE-627 rakwb eng 670 VZ Smith, Alice E. verfasserin aut Predicting product quality with backpropagation: A thermoplastic injection moulding case study 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 1993 Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling. Artificial neural networks Backpropagation neural networks Injection moulding Process control Quality control Statistical process control Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 8(1993), 4 vom: Juli, Seite 252-257 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:8 year:1993 number:4 month:07 pages:252-257 https://doi.org/10.1007/BF01748635 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_132 GBV_ILN_136 GBV_ILN_150 GBV_ILN_161 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 8 1993 4 07 252-257 |
spelling |
10.1007/BF01748635 doi (DE-627)OLC2025984820 (DE-He213)BF01748635-p DE-627 ger DE-627 rakwb eng 670 VZ Smith, Alice E. verfasserin aut Predicting product quality with backpropagation: A thermoplastic injection moulding case study 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 1993 Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling. Artificial neural networks Backpropagation neural networks Injection moulding Process control Quality control Statistical process control Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 8(1993), 4 vom: Juli, Seite 252-257 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:8 year:1993 number:4 month:07 pages:252-257 https://doi.org/10.1007/BF01748635 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_132 GBV_ILN_136 GBV_ILN_150 GBV_ILN_161 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 8 1993 4 07 252-257 |
allfields_unstemmed |
10.1007/BF01748635 doi (DE-627)OLC2025984820 (DE-He213)BF01748635-p DE-627 ger DE-627 rakwb eng 670 VZ Smith, Alice E. verfasserin aut Predicting product quality with backpropagation: A thermoplastic injection moulding case study 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 1993 Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling. Artificial neural networks Backpropagation neural networks Injection moulding Process control Quality control Statistical process control Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 8(1993), 4 vom: Juli, Seite 252-257 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:8 year:1993 number:4 month:07 pages:252-257 https://doi.org/10.1007/BF01748635 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_132 GBV_ILN_136 GBV_ILN_150 GBV_ILN_161 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 8 1993 4 07 252-257 |
allfieldsGer |
10.1007/BF01748635 doi (DE-627)OLC2025984820 (DE-He213)BF01748635-p DE-627 ger DE-627 rakwb eng 670 VZ Smith, Alice E. verfasserin aut Predicting product quality with backpropagation: A thermoplastic injection moulding case study 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 1993 Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling. Artificial neural networks Backpropagation neural networks Injection moulding Process control Quality control Statistical process control Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 8(1993), 4 vom: Juli, Seite 252-257 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:8 year:1993 number:4 month:07 pages:252-257 https://doi.org/10.1007/BF01748635 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_132 GBV_ILN_136 GBV_ILN_150 GBV_ILN_161 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 8 1993 4 07 252-257 |
allfieldsSound |
10.1007/BF01748635 doi (DE-627)OLC2025984820 (DE-He213)BF01748635-p DE-627 ger DE-627 rakwb eng 670 VZ Smith, Alice E. verfasserin aut Predicting product quality with backpropagation: A thermoplastic injection moulding case study 1993 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 1993 Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling. Artificial neural networks Backpropagation neural networks Injection moulding Process control Quality control Statistical process control Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 8(1993), 4 vom: Juli, Seite 252-257 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:8 year:1993 number:4 month:07 pages:252-257 https://doi.org/10.1007/BF01748635 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_132 GBV_ILN_136 GBV_ILN_150 GBV_ILN_161 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 8 1993 4 07 252-257 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 8(1993), 4 vom: Juli, Seite 252-257 volume:8 year:1993 number:4 month:07 pages:252-257 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 8(1993), 4 vom: Juli, Seite 252-257 volume:8 year:1993 number:4 month:07 pages:252-257 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Artificial neural networks Backpropagation neural networks Injection moulding Process control Quality control Statistical process control |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Smith, Alice E. @@aut@@ |
publishDateDaySort_date |
1993-07-01T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2025984820 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025984820</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401073209.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1993 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01748635</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025984820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01748635-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Alice E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting product quality with backpropagation: A thermoplastic injection moulding case study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1993</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 1993</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backpropagation neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Injection moulding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quality control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical process control</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">8(1993), 4 vom: Juli, Seite 252-257</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:1993</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:252-257</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01748635</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_132</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_136</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">1993</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">252-257</subfield></datafield></record></collection>
|
author |
Smith, Alice E. |
spellingShingle |
Smith, Alice E. ddc 670 misc Artificial neural networks misc Backpropagation neural networks misc Injection moulding misc Process control misc Quality control misc Statistical process control Predicting product quality with backpropagation: A thermoplastic injection moulding case study |
authorStr |
Smith, Alice E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Predicting product quality with backpropagation: A thermoplastic injection moulding case study Artificial neural networks Backpropagation neural networks Injection moulding Process control Quality control Statistical process control |
topic |
ddc 670 misc Artificial neural networks misc Backpropagation neural networks misc Injection moulding misc Process control misc Quality control misc Statistical process control |
topic_unstemmed |
ddc 670 misc Artificial neural networks misc Backpropagation neural networks misc Injection moulding misc Process control misc Quality control misc Statistical process control |
topic_browse |
ddc 670 misc Artificial neural networks misc Backpropagation neural networks misc Injection moulding misc Process control misc Quality control misc Statistical process control |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Predicting product quality with backpropagation: A thermoplastic injection moulding case study |
ctrlnum |
(DE-627)OLC2025984820 (DE-He213)BF01748635-p |
title_full |
Predicting product quality with backpropagation: A thermoplastic injection moulding case study |
author_sort |
Smith, Alice E. |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1993 |
contenttype_str_mv |
txt |
container_start_page |
252 |
author_browse |
Smith, Alice E. |
container_volume |
8 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Smith, Alice E. |
doi_str_mv |
10.1007/BF01748635 |
dewey-full |
670 |
title_sort |
predicting product quality with backpropagation: a thermoplastic injection moulding case study |
title_auth |
Predicting product quality with backpropagation: A thermoplastic injection moulding case study |
abstract |
Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling. © Springer-Verlag London Limited 1993 |
abstractGer |
Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling. © Springer-Verlag London Limited 1993 |
abstract_unstemmed |
Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling. © Springer-Verlag London Limited 1993 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_132 GBV_ILN_136 GBV_ILN_150 GBV_ILN_161 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 |
container_issue |
4 |
title_short |
Predicting product quality with backpropagation: A thermoplastic injection moulding case study |
url |
https://doi.org/10.1007/BF01748635 |
remote_bool |
false |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01748635 |
up_date |
2024-07-04T02:50:13.580Z |
_version_ |
1803615116816547840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2025984820</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401073209.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1993 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01748635</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2025984820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01748635-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Alice E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting product quality with backpropagation: A thermoplastic injection moulding case study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1993</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 1993</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This application uses live data from a thermoplastic injection moulding manufacturer to examine the feasibility and effectiveness of using backpropagation artificial neural networks for predictive quality control. Preprocessing and post processing of live data, formulating neural predictive strategies, selecting architecture and parameters, and handling of temporal aspects are topics. Performance of the neural networks are compared to other quality control methods, including control charts and statistical techniques. This case study demonstrates that even manufacturers who have modest expertise in computing and limited hardware and software availability can successfully use neural networks for data analysis and modelling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backpropagation neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Injection moulding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quality control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical process control</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">8(1993), 4 vom: Juli, Seite 252-257</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:1993</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:252-257</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01748635</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_132</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_136</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">1993</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">252-257</subfield></datafield></record></collection>
|
score |
7.401189 |