Continuous review reorder point problems in a fuzzy environment
Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, th...
Ausführliche Beschreibung
Autor*in: |
Pai, Ping-Feng [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Limited 2003 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer-Verlag, 1985, 22(2003), 5-6 vom: 27. Juni, Seite 436-440 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2003 ; number:5-6 ; day:27 ; month:06 ; pages:436-440 |
Links: |
---|
DOI / URN: |
10.1007/s00170-003-1559-4 |
---|
Katalog-ID: |
OLC202599754X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC202599754X | ||
003 | DE-627 | ||
005 | 20230401073355.0 | ||
007 | tu | ||
008 | 200820s2003 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-003-1559-4 |2 doi | |
035 | |a (DE-627)OLC202599754X | ||
035 | |a (DE-He213)s00170-003-1559-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Pai, Ping-Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Continuous review reorder point problems in a fuzzy environment |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Limited 2003 | ||
520 | |a Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated. | ||
650 | 4 | |a Fuzzy set theory | |
650 | 4 | |a Continuous review reorder point problems | |
650 | 4 | |a Reorder point | |
650 | 4 | |a Order quantity | |
700 | 1 | |a Hsu, Min-Min |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer-Verlag, 1985 |g 22(2003), 5-6 vom: 27. Juni, Seite 436-440 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2003 |g number:5-6 |g day:27 |g month:06 |g pages:436-440 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-003-1559-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2241 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4307 | ||
951 | |a AR | ||
952 | |d 22 |j 2003 |e 5-6 |b 27 |c 06 |h 436-440 |
author_variant |
p f p pfp m m h mmh |
---|---|
matchkey_str |
article:02683768:2003----::otnoseiwerepitrbesn |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1007/s00170-003-1559-4 doi (DE-627)OLC202599754X (DE-He213)s00170-003-1559-4-p DE-627 ger DE-627 rakwb eng 670 VZ Pai, Ping-Feng verfasserin aut Continuous review reorder point problems in a fuzzy environment 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2003 Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated. Fuzzy set theory Continuous review reorder point problems Reorder point Order quantity Hsu, Min-Min aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 22(2003), 5-6 vom: 27. Juni, Seite 436-440 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:22 year:2003 number:5-6 day:27 month:06 pages:436-440 https://doi.org/10.1007/s00170-003-1559-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 22 2003 5-6 27 06 436-440 |
spelling |
10.1007/s00170-003-1559-4 doi (DE-627)OLC202599754X (DE-He213)s00170-003-1559-4-p DE-627 ger DE-627 rakwb eng 670 VZ Pai, Ping-Feng verfasserin aut Continuous review reorder point problems in a fuzzy environment 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2003 Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated. Fuzzy set theory Continuous review reorder point problems Reorder point Order quantity Hsu, Min-Min aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 22(2003), 5-6 vom: 27. Juni, Seite 436-440 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:22 year:2003 number:5-6 day:27 month:06 pages:436-440 https://doi.org/10.1007/s00170-003-1559-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 22 2003 5-6 27 06 436-440 |
allfields_unstemmed |
10.1007/s00170-003-1559-4 doi (DE-627)OLC202599754X (DE-He213)s00170-003-1559-4-p DE-627 ger DE-627 rakwb eng 670 VZ Pai, Ping-Feng verfasserin aut Continuous review reorder point problems in a fuzzy environment 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2003 Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated. Fuzzy set theory Continuous review reorder point problems Reorder point Order quantity Hsu, Min-Min aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 22(2003), 5-6 vom: 27. Juni, Seite 436-440 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:22 year:2003 number:5-6 day:27 month:06 pages:436-440 https://doi.org/10.1007/s00170-003-1559-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 22 2003 5-6 27 06 436-440 |
allfieldsGer |
10.1007/s00170-003-1559-4 doi (DE-627)OLC202599754X (DE-He213)s00170-003-1559-4-p DE-627 ger DE-627 rakwb eng 670 VZ Pai, Ping-Feng verfasserin aut Continuous review reorder point problems in a fuzzy environment 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2003 Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated. Fuzzy set theory Continuous review reorder point problems Reorder point Order quantity Hsu, Min-Min aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 22(2003), 5-6 vom: 27. Juni, Seite 436-440 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:22 year:2003 number:5-6 day:27 month:06 pages:436-440 https://doi.org/10.1007/s00170-003-1559-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 22 2003 5-6 27 06 436-440 |
allfieldsSound |
10.1007/s00170-003-1559-4 doi (DE-627)OLC202599754X (DE-He213)s00170-003-1559-4-p DE-627 ger DE-627 rakwb eng 670 VZ Pai, Ping-Feng verfasserin aut Continuous review reorder point problems in a fuzzy environment 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2003 Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated. Fuzzy set theory Continuous review reorder point problems Reorder point Order quantity Hsu, Min-Min aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 22(2003), 5-6 vom: 27. Juni, Seite 436-440 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:22 year:2003 number:5-6 day:27 month:06 pages:436-440 https://doi.org/10.1007/s00170-003-1559-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 22 2003 5-6 27 06 436-440 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 22(2003), 5-6 vom: 27. Juni, Seite 436-440 volume:22 year:2003 number:5-6 day:27 month:06 pages:436-440 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 22(2003), 5-6 vom: 27. Juni, Seite 436-440 volume:22 year:2003 number:5-6 day:27 month:06 pages:436-440 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fuzzy set theory Continuous review reorder point problems Reorder point Order quantity |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Pai, Ping-Feng @@aut@@ Hsu, Min-Min @@aut@@ |
publishDateDaySort_date |
2003-06-27T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC202599754X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC202599754X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401073355.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-003-1559-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC202599754X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-003-1559-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pai, Ping-Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous review reorder point problems in a fuzzy environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous review reorder point problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reorder point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order quantity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Min-Min</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">22(2003), 5-6 vom: 27. Juni, Seite 436-440</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:436-440</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-003-1559-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2003</subfield><subfield code="e">5-6</subfield><subfield code="b">27</subfield><subfield code="c">06</subfield><subfield code="h">436-440</subfield></datafield></record></collection>
|
author |
Pai, Ping-Feng |
spellingShingle |
Pai, Ping-Feng ddc 670 misc Fuzzy set theory misc Continuous review reorder point problems misc Reorder point misc Order quantity Continuous review reorder point problems in a fuzzy environment |
authorStr |
Pai, Ping-Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Continuous review reorder point problems in a fuzzy environment Fuzzy set theory Continuous review reorder point problems Reorder point Order quantity |
topic |
ddc 670 misc Fuzzy set theory misc Continuous review reorder point problems misc Reorder point misc Order quantity |
topic_unstemmed |
ddc 670 misc Fuzzy set theory misc Continuous review reorder point problems misc Reorder point misc Order quantity |
topic_browse |
ddc 670 misc Fuzzy set theory misc Continuous review reorder point problems misc Reorder point misc Order quantity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Continuous review reorder point problems in a fuzzy environment |
ctrlnum |
(DE-627)OLC202599754X (DE-He213)s00170-003-1559-4-p |
title_full |
Continuous review reorder point problems in a fuzzy environment |
author_sort |
Pai, Ping-Feng |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
436 |
author_browse |
Pai, Ping-Feng Hsu, Min-Min |
container_volume |
22 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Pai, Ping-Feng |
doi_str_mv |
10.1007/s00170-003-1559-4 |
dewey-full |
670 |
title_sort |
continuous review reorder point problems in a fuzzy environment |
title_auth |
Continuous review reorder point problems in a fuzzy environment |
abstract |
Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated. © Springer-Verlag London Limited 2003 |
abstractGer |
Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated. © Springer-Verlag London Limited 2003 |
abstract_unstemmed |
Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated. © Springer-Verlag London Limited 2003 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 |
container_issue |
5-6 |
title_short |
Continuous review reorder point problems in a fuzzy environment |
url |
https://doi.org/10.1007/s00170-003-1559-4 |
remote_bool |
false |
author2 |
Hsu, Min-Min |
author2Str |
Hsu, Min-Min |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-003-1559-4 |
up_date |
2024-07-04T02:51:49.489Z |
_version_ |
1803615217384423424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC202599754X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401073355.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-003-1559-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC202599754X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-003-1559-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pai, Ping-Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous review reorder point problems in a fuzzy environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In traditional continuous review reorder point problems, probability theory has been wildly explored to deal with uncertain cases. In most situations, the decision maker is assumed to be aware of the probability distribution of uncertainty when the probability theory is applied. However, this is seldom the case. In the most situations, the uncertainty is estimated within a certain interval without any knowledge of the probability distribution within the interval. In this investigation, the application of fuzzy sets theory is introduced for continuous review reorder point problems. It is assumed that uncertainties may appear in the demand over the lead time and in holding costs where decisionmaking is characterised by the lack of precise future estimates of the uncertain information. The minimised possible total cost is obtained by a corresponding reorder point and quantity. The computational aspect of the fuzzy model and its interpretations are illustrated by examples. Finally, deterministic approximations to this fuzzy approach are also investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous review reorder point problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reorder point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order quantity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Min-Min</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">22(2003), 5-6 vom: 27. Juni, Seite 436-440</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:436-440</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-003-1559-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2003</subfield><subfield code="e">5-6</subfield><subfield code="b">27</subfield><subfield code="c">06</subfield><subfield code="h">436-440</subfield></datafield></record></collection>
|
score |
7.4000597 |