A variable sampling interval EWMA chart for attributes
Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model f...
Ausführliche Beschreibung
Autor*in: |
Epprecht, Eugenio K. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Limited 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer-Verlag, 1985, 49(2009), 1-4 vom: 18. Nov., Seite 281-292 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2009 ; number:1-4 ; day:18 ; month:11 ; pages:281-292 |
Links: |
---|
DOI / URN: |
10.1007/s00170-009-2390-3 |
---|
Katalog-ID: |
OLC2026029008 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026029008 | ||
003 | DE-627 | ||
005 | 20230323115712.0 | ||
007 | tu | ||
008 | 200820s2009 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-009-2390-3 |2 doi | |
035 | |a (DE-627)OLC2026029008 | ||
035 | |a (DE-He213)s00170-009-2390-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Epprecht, Eugenio K. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A variable sampling interval EWMA chart for attributes |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Limited 2009 | ||
520 | |a Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small. | ||
650 | 4 | |a Variable sampling interval | |
650 | 4 | |a EWMA control chart | |
650 | 4 | |a Attributes | |
650 | 4 | |a Fraction nonconforming | |
650 | 4 | |a Adaptive control charts | |
650 | 4 | |a Statistical process control charts | |
650 | 4 | |a Poisson EWMA | |
650 | 4 | |a VSI | |
700 | 1 | |a Simões, Bruno F. T. |4 aut | |
700 | 1 | |a Mendes, Flávia C. T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer-Verlag, 1985 |g 49(2009), 1-4 vom: 18. Nov., Seite 281-292 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2009 |g number:1-4 |g day:18 |g month:11 |g pages:281-292 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-009-2390-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2241 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4307 | ||
951 | |a AR | ||
952 | |d 49 |j 2009 |e 1-4 |b 18 |c 11 |h 281-292 |
author_variant |
e k e ek eke b f t s bft bfts f c t m fct fctm |
---|---|
matchkey_str |
article:02683768:2009----::vralsmlnitraemca |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1007/s00170-009-2390-3 doi (DE-627)OLC2026029008 (DE-He213)s00170-009-2390-3-p DE-627 ger DE-627 rakwb eng 670 VZ Epprecht, Eugenio K. verfasserin aut A variable sampling interval EWMA chart for attributes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2009 Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small. Variable sampling interval EWMA control chart Attributes Fraction nonconforming Adaptive control charts Statistical process control charts Poisson EWMA VSI Simões, Bruno F. T. aut Mendes, Flávia C. T. aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 49(2009), 1-4 vom: 18. Nov., Seite 281-292 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:49 year:2009 number:1-4 day:18 month:11 pages:281-292 https://doi.org/10.1007/s00170-009-2390-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 49 2009 1-4 18 11 281-292 |
spelling |
10.1007/s00170-009-2390-3 doi (DE-627)OLC2026029008 (DE-He213)s00170-009-2390-3-p DE-627 ger DE-627 rakwb eng 670 VZ Epprecht, Eugenio K. verfasserin aut A variable sampling interval EWMA chart for attributes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2009 Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small. Variable sampling interval EWMA control chart Attributes Fraction nonconforming Adaptive control charts Statistical process control charts Poisson EWMA VSI Simões, Bruno F. T. aut Mendes, Flávia C. T. aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 49(2009), 1-4 vom: 18. Nov., Seite 281-292 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:49 year:2009 number:1-4 day:18 month:11 pages:281-292 https://doi.org/10.1007/s00170-009-2390-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 49 2009 1-4 18 11 281-292 |
allfields_unstemmed |
10.1007/s00170-009-2390-3 doi (DE-627)OLC2026029008 (DE-He213)s00170-009-2390-3-p DE-627 ger DE-627 rakwb eng 670 VZ Epprecht, Eugenio K. verfasserin aut A variable sampling interval EWMA chart for attributes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2009 Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small. Variable sampling interval EWMA control chart Attributes Fraction nonconforming Adaptive control charts Statistical process control charts Poisson EWMA VSI Simões, Bruno F. T. aut Mendes, Flávia C. T. aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 49(2009), 1-4 vom: 18. Nov., Seite 281-292 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:49 year:2009 number:1-4 day:18 month:11 pages:281-292 https://doi.org/10.1007/s00170-009-2390-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 49 2009 1-4 18 11 281-292 |
allfieldsGer |
10.1007/s00170-009-2390-3 doi (DE-627)OLC2026029008 (DE-He213)s00170-009-2390-3-p DE-627 ger DE-627 rakwb eng 670 VZ Epprecht, Eugenio K. verfasserin aut A variable sampling interval EWMA chart for attributes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2009 Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small. Variable sampling interval EWMA control chart Attributes Fraction nonconforming Adaptive control charts Statistical process control charts Poisson EWMA VSI Simões, Bruno F. T. aut Mendes, Flávia C. T. aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 49(2009), 1-4 vom: 18. Nov., Seite 281-292 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:49 year:2009 number:1-4 day:18 month:11 pages:281-292 https://doi.org/10.1007/s00170-009-2390-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 49 2009 1-4 18 11 281-292 |
allfieldsSound |
10.1007/s00170-009-2390-3 doi (DE-627)OLC2026029008 (DE-He213)s00170-009-2390-3-p DE-627 ger DE-627 rakwb eng 670 VZ Epprecht, Eugenio K. verfasserin aut A variable sampling interval EWMA chart for attributes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2009 Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small. Variable sampling interval EWMA control chart Attributes Fraction nonconforming Adaptive control charts Statistical process control charts Poisson EWMA VSI Simões, Bruno F. T. aut Mendes, Flávia C. T. aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 49(2009), 1-4 vom: 18. Nov., Seite 281-292 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:49 year:2009 number:1-4 day:18 month:11 pages:281-292 https://doi.org/10.1007/s00170-009-2390-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 AR 49 2009 1-4 18 11 281-292 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 49(2009), 1-4 vom: 18. Nov., Seite 281-292 volume:49 year:2009 number:1-4 day:18 month:11 pages:281-292 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 49(2009), 1-4 vom: 18. Nov., Seite 281-292 volume:49 year:2009 number:1-4 day:18 month:11 pages:281-292 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Variable sampling interval EWMA control chart Attributes Fraction nonconforming Adaptive control charts Statistical process control charts Poisson EWMA VSI |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Epprecht, Eugenio K. @@aut@@ Simões, Bruno F. T. @@aut@@ Mendes, Flávia C. T. @@aut@@ |
publishDateDaySort_date |
2009-11-18T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026029008 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026029008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323115712.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-009-2390-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026029008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-009-2390-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Epprecht, Eugenio K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A variable sampling interval EWMA chart for attributes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable sampling interval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EWMA control chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attributes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fraction nonconforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive control charts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical process control charts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson EWMA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VSI</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simões, Bruno F. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendes, Flávia C. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">49(2009), 1-4 vom: 18. Nov., Seite 281-292</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:18</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:281-292</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-009-2390-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2009</subfield><subfield code="e">1-4</subfield><subfield code="b">18</subfield><subfield code="c">11</subfield><subfield code="h">281-292</subfield></datafield></record></collection>
|
author |
Epprecht, Eugenio K. |
spellingShingle |
Epprecht, Eugenio K. ddc 670 misc Variable sampling interval misc EWMA control chart misc Attributes misc Fraction nonconforming misc Adaptive control charts misc Statistical process control charts misc Poisson EWMA misc VSI A variable sampling interval EWMA chart for attributes |
authorStr |
Epprecht, Eugenio K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ A variable sampling interval EWMA chart for attributes Variable sampling interval EWMA control chart Attributes Fraction nonconforming Adaptive control charts Statistical process control charts Poisson EWMA VSI |
topic |
ddc 670 misc Variable sampling interval misc EWMA control chart misc Attributes misc Fraction nonconforming misc Adaptive control charts misc Statistical process control charts misc Poisson EWMA misc VSI |
topic_unstemmed |
ddc 670 misc Variable sampling interval misc EWMA control chart misc Attributes misc Fraction nonconforming misc Adaptive control charts misc Statistical process control charts misc Poisson EWMA misc VSI |
topic_browse |
ddc 670 misc Variable sampling interval misc EWMA control chart misc Attributes misc Fraction nonconforming misc Adaptive control charts misc Statistical process control charts misc Poisson EWMA misc VSI |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
A variable sampling interval EWMA chart for attributes |
ctrlnum |
(DE-627)OLC2026029008 (DE-He213)s00170-009-2390-3-p |
title_full |
A variable sampling interval EWMA chart for attributes |
author_sort |
Epprecht, Eugenio K. |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
281 |
author_browse |
Epprecht, Eugenio K. Simões, Bruno F. T. Mendes, Flávia C. T. |
container_volume |
49 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Epprecht, Eugenio K. |
doi_str_mv |
10.1007/s00170-009-2390-3 |
dewey-full |
670 |
title_sort |
a variable sampling interval ewma chart for attributes |
title_auth |
A variable sampling interval EWMA chart for attributes |
abstract |
Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small. © Springer-Verlag London Limited 2009 |
abstractGer |
Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small. © Springer-Verlag London Limited 2009 |
abstract_unstemmed |
Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small. © Springer-Verlag London Limited 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4277 GBV_ILN_4307 |
container_issue |
1-4 |
title_short |
A variable sampling interval EWMA chart for attributes |
url |
https://doi.org/10.1007/s00170-009-2390-3 |
remote_bool |
false |
author2 |
Simões, Bruno F. T. Mendes, Flávia C. T. |
author2Str |
Simões, Bruno F. T. Mendes, Flávia C. T. |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-009-2390-3 |
up_date |
2024-07-04T02:56:09.004Z |
_version_ |
1803615489508769792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026029008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323115712.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-009-2390-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026029008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-009-2390-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Epprecht, Eugenio K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A variable sampling interval EWMA chart for attributes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We propose a variable sampling interval exponentially weighted moving average (VSI c EWMA) chart for the average number of nonconformities in the sample, with the objective of improved detection of small to moderate increases in the process nonconformities rate. Using a Markov chain model for the calculations, we obtain optimal designs for this chart as well as for the fixed sampling interval c EWMA chart and compare the performances of the two control schemes in terms of their expected times to signal an out-of-control condition. The designs are optimal in the sense that they minimize the expected delay in the detection of upward shifts of a specified magnitude in the process nonconformities rate, while keeping the false alarm rate and the average sampling frequency at specified levels. The results reveal considerable gains in detection speed with the use of the VSI scheme. The optimal parameters found for each case are tabulated and may be used directly in practice. The results of the analysis, including the optimal design parameters tabulated, can also be extended to a VSI np EWMA chart for improved detection of small to moderate increases in the fraction nonconforming of the process provided that in-control fraction nonconforming is small.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable sampling interval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EWMA control chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attributes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fraction nonconforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive control charts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical process control charts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson EWMA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VSI</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simões, Bruno F. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendes, Flávia C. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">49(2009), 1-4 vom: 18. Nov., Seite 281-292</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:18</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:281-292</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-009-2390-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2009</subfield><subfield code="e">1-4</subfield><subfield code="b">18</subfield><subfield code="c">11</subfield><subfield code="h">281-292</subfield></datafield></record></collection>
|
score |
7.400776 |