Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network
Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estima...
Ausführliche Beschreibung
Autor*in: |
Kitayama, Satoshi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
Sequential approximate optimization |
---|
Anmerkung: |
© Springer-Verlag London Limited 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer-Verlag, 1985, 61(2011), 9-12 vom: 24. Nov., Seite 1067-1083 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2011 ; number:9-12 ; day:24 ; month:11 ; pages:1067-1083 |
Links: |
---|
DOI / URN: |
10.1007/s00170-011-3755-y |
---|
Katalog-ID: |
OLC2026042268 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026042268 | ||
003 | DE-627 | ||
005 | 20230323120045.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-011-3755-y |2 doi | |
035 | |a (DE-627)OLC2026042268 | ||
035 | |a (DE-He213)s00170-011-3755-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Kitayama, Satoshi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Limited 2011 | ||
520 | |a Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed. | ||
650 | 4 | |a Sequential approximate optimization | |
650 | 4 | |a Radial basis function network | |
650 | 4 | |a Variable blank holder force trajectory | |
650 | 4 | |a Deep drawing | |
700 | 1 | |a Kita, Kenta |4 aut | |
700 | 1 | |a Yamazaki, Koetsu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer-Verlag, 1985 |g 61(2011), 9-12 vom: 24. Nov., Seite 1067-1083 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2011 |g number:9-12 |g day:24 |g month:11 |g pages:1067-1083 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-011-3755-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2241 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4046 | ||
951 | |a AR | ||
952 | |d 61 |j 2011 |e 9-12 |b 24 |c 11 |h 1067-1083 |
author_variant |
s k sk k k kk k y ky |
---|---|
matchkey_str |
article:02683768:2011----::piiainfaibelnhlefrerjcoyyeunilprxmto |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s00170-011-3755-y doi (DE-627)OLC2026042268 (DE-He213)s00170-011-3755-y-p DE-627 ger DE-627 rakwb eng 670 VZ Kitayama, Satoshi verfasserin aut Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed. Sequential approximate optimization Radial basis function network Variable blank holder force trajectory Deep drawing Kita, Kenta aut Yamazaki, Koetsu aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 61(2011), 9-12 vom: 24. Nov., Seite 1067-1083 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:61 year:2011 number:9-12 day:24 month:11 pages:1067-1083 https://doi.org/10.1007/s00170-011-3755-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 AR 61 2011 9-12 24 11 1067-1083 |
spelling |
10.1007/s00170-011-3755-y doi (DE-627)OLC2026042268 (DE-He213)s00170-011-3755-y-p DE-627 ger DE-627 rakwb eng 670 VZ Kitayama, Satoshi verfasserin aut Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed. Sequential approximate optimization Radial basis function network Variable blank holder force trajectory Deep drawing Kita, Kenta aut Yamazaki, Koetsu aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 61(2011), 9-12 vom: 24. Nov., Seite 1067-1083 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:61 year:2011 number:9-12 day:24 month:11 pages:1067-1083 https://doi.org/10.1007/s00170-011-3755-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 AR 61 2011 9-12 24 11 1067-1083 |
allfields_unstemmed |
10.1007/s00170-011-3755-y doi (DE-627)OLC2026042268 (DE-He213)s00170-011-3755-y-p DE-627 ger DE-627 rakwb eng 670 VZ Kitayama, Satoshi verfasserin aut Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed. Sequential approximate optimization Radial basis function network Variable blank holder force trajectory Deep drawing Kita, Kenta aut Yamazaki, Koetsu aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 61(2011), 9-12 vom: 24. Nov., Seite 1067-1083 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:61 year:2011 number:9-12 day:24 month:11 pages:1067-1083 https://doi.org/10.1007/s00170-011-3755-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 AR 61 2011 9-12 24 11 1067-1083 |
allfieldsGer |
10.1007/s00170-011-3755-y doi (DE-627)OLC2026042268 (DE-He213)s00170-011-3755-y-p DE-627 ger DE-627 rakwb eng 670 VZ Kitayama, Satoshi verfasserin aut Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed. Sequential approximate optimization Radial basis function network Variable blank holder force trajectory Deep drawing Kita, Kenta aut Yamazaki, Koetsu aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 61(2011), 9-12 vom: 24. Nov., Seite 1067-1083 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:61 year:2011 number:9-12 day:24 month:11 pages:1067-1083 https://doi.org/10.1007/s00170-011-3755-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 AR 61 2011 9-12 24 11 1067-1083 |
allfieldsSound |
10.1007/s00170-011-3755-y doi (DE-627)OLC2026042268 (DE-He213)s00170-011-3755-y-p DE-627 ger DE-627 rakwb eng 670 VZ Kitayama, Satoshi verfasserin aut Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Limited 2011 Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed. Sequential approximate optimization Radial basis function network Variable blank holder force trajectory Deep drawing Kita, Kenta aut Yamazaki, Koetsu aut Enthalten in The international journal of advanced manufacturing technology Springer-Verlag, 1985 61(2011), 9-12 vom: 24. Nov., Seite 1067-1083 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:61 year:2011 number:9-12 day:24 month:11 pages:1067-1083 https://doi.org/10.1007/s00170-011-3755-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 AR 61 2011 9-12 24 11 1067-1083 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 61(2011), 9-12 vom: 24. Nov., Seite 1067-1083 volume:61 year:2011 number:9-12 day:24 month:11 pages:1067-1083 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 61(2011), 9-12 vom: 24. Nov., Seite 1067-1083 volume:61 year:2011 number:9-12 day:24 month:11 pages:1067-1083 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sequential approximate optimization Radial basis function network Variable blank holder force trajectory Deep drawing |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Kitayama, Satoshi @@aut@@ Kita, Kenta @@aut@@ Yamazaki, Koetsu @@aut@@ |
publishDateDaySort_date |
2011-11-24T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026042268 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026042268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323120045.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-011-3755-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026042268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-011-3755-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kitayama, Satoshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequential approximate optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial basis function network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable blank holder force trajectory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep drawing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kita, Kenta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamazaki, Koetsu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">61(2011), 9-12 vom: 24. Nov., Seite 1067-1083</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:9-12</subfield><subfield code="g">day:24</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1067-1083</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-011-3755-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2011</subfield><subfield code="e">9-12</subfield><subfield code="b">24</subfield><subfield code="c">11</subfield><subfield code="h">1067-1083</subfield></datafield></record></collection>
|
author |
Kitayama, Satoshi |
spellingShingle |
Kitayama, Satoshi ddc 670 misc Sequential approximate optimization misc Radial basis function network misc Variable blank holder force trajectory misc Deep drawing Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network |
authorStr |
Kitayama, Satoshi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network Sequential approximate optimization Radial basis function network Variable blank holder force trajectory Deep drawing |
topic |
ddc 670 misc Sequential approximate optimization misc Radial basis function network misc Variable blank holder force trajectory misc Deep drawing |
topic_unstemmed |
ddc 670 misc Sequential approximate optimization misc Radial basis function network misc Variable blank holder force trajectory misc Deep drawing |
topic_browse |
ddc 670 misc Sequential approximate optimization misc Radial basis function network misc Variable blank holder force trajectory misc Deep drawing |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network |
ctrlnum |
(DE-627)OLC2026042268 (DE-He213)s00170-011-3755-y-p |
title_full |
Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network |
author_sort |
Kitayama, Satoshi |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
1067 |
author_browse |
Kitayama, Satoshi Kita, Kenta Yamazaki, Koetsu |
container_volume |
61 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Kitayama, Satoshi |
doi_str_mv |
10.1007/s00170-011-3755-y |
dewey-full |
670 |
title_sort |
optimization of variable blank holder force trajectory by sequential approximate optimization with rbf network |
title_auth |
Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network |
abstract |
Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed. © Springer-Verlag London Limited 2011 |
abstractGer |
Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed. © Springer-Verlag London Limited 2011 |
abstract_unstemmed |
Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed. © Springer-Verlag London Limited 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2241 GBV_ILN_2333 GBV_ILN_4046 |
container_issue |
9-12 |
title_short |
Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network |
url |
https://doi.org/10.1007/s00170-011-3755-y |
remote_bool |
false |
author2 |
Kita, Kenta Yamazaki, Koetsu |
author2Str |
Kita, Kenta Yamazaki, Koetsu |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-011-3755-y |
up_date |
2024-07-04T02:58:04.417Z |
_version_ |
1803615610528071680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026042268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323120045.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-011-3755-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026042268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-011-3755-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kitayama, Satoshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Limited 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Sequential approximate optimization (SAO) is an attractive approach for design optimization. In this paper, the radial basis function (RBF) network is employed for the SAO. First, we examine the width of the Gaussian kernel, which affects the response surface. By examining the simple estimate proposed by Nakayama, four sufficient conditions are introduced. Then, a new simple estimate of the width in the Gaussian kernel is proposed. Second, a new sampling strategy with the RBF network is also proposed. In order to find the sparse region, the density function with the RBF network is developed. The proposed width and sampling strategy are examined through benchmark problems. Finally, the proposed SAO is applied to the optimal variable blank holder force (VBHF) trajectory for square cup deep drawing. The objective is taken as the minimization of the deviation of whole thickness. The constraints are quantitatively defined with the forming limit diagram in which no wrinkling and tearing can be observed. The design variables are the blank holder force. In particular, the risk of both tearing and wrinkling can be handled as the constraints separately. Numerical simulation is carried out by the optimal VBHF trajectory with SAO. It is clear from the numerical simulation that no tearing and wrinkling can be observed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequential approximate optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial basis function network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable blank holder force trajectory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep drawing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kita, Kenta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamazaki, Koetsu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">61(2011), 9-12 vom: 24. Nov., Seite 1067-1083</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:9-12</subfield><subfield code="g">day:24</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1067-1083</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-011-3755-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2241</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2011</subfield><subfield code="e">9-12</subfield><subfield code="b">24</subfield><subfield code="c">11</subfield><subfield code="h">1067-1083</subfield></datafield></record></collection>
|
score |
7.400943 |