Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path
Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, th...
Ausführliche Beschreibung
Autor*in: |
Wei, Z. C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 67(2013), 9-12 vom: 05. Jan., Seite 2853-2861 |
---|---|
Übergeordnetes Werk: |
volume:67 ; year:2013 ; number:9-12 ; day:05 ; month:01 ; pages:2853-2861 |
Links: |
---|
DOI / URN: |
10.1007/s00170-012-4698-7 |
---|
Katalog-ID: |
OLC2026050899 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026050899 | ||
003 | DE-627 | ||
005 | 20230323140224.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-012-4698-7 |2 doi | |
035 | |a (DE-627)OLC2026050899 | ||
035 | |a (DE-He213)s00170-012-4698-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Wei, Z. C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London 2013 | ||
520 | |a Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface. | ||
650 | 4 | |a Form error | |
650 | 4 | |a Sculptured surface | |
650 | 4 | |a Ball-end milling | |
650 | 4 | |a Tool deflection | |
700 | 1 | |a Wang, M. J. |4 aut | |
700 | 1 | |a Tang, W. C. |4 aut | |
700 | 1 | |a Zhu, J. N. |4 aut | |
700 | 1 | |a Xia, G. C. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 67(2013), 9-12 vom: 05. Jan., Seite 2853-2861 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:67 |g year:2013 |g number:9-12 |g day:05 |g month:01 |g pages:2853-2861 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-012-4698-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4046 | ||
951 | |a AR | ||
952 | |d 67 |j 2013 |e 9-12 |b 05 |c 01 |h 2853-2861 |
author_variant |
z c w zc zcw m j w mj mjw w c t wc wct j n z jn jnz g c x gc gcx |
---|---|
matchkey_str |
article:02683768:2013----::omrocmestoibledilnosupuesraeihl |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s00170-012-4698-7 doi (DE-627)OLC2026050899 (DE-He213)s00170-012-4698-7-p DE-627 ger DE-627 rakwb eng 670 VZ Wei, Z. C. verfasserin aut Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface. Form error Sculptured surface Ball-end milling Tool deflection Wang, M. J. aut Tang, W. C. aut Zhu, J. N. aut Xia, G. C. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 67(2013), 9-12 vom: 05. Jan., Seite 2853-2861 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:67 year:2013 number:9-12 day:05 month:01 pages:2853-2861 https://doi.org/10.1007/s00170-012-4698-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 67 2013 9-12 05 01 2853-2861 |
spelling |
10.1007/s00170-012-4698-7 doi (DE-627)OLC2026050899 (DE-He213)s00170-012-4698-7-p DE-627 ger DE-627 rakwb eng 670 VZ Wei, Z. C. verfasserin aut Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface. Form error Sculptured surface Ball-end milling Tool deflection Wang, M. J. aut Tang, W. C. aut Zhu, J. N. aut Xia, G. C. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 67(2013), 9-12 vom: 05. Jan., Seite 2853-2861 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:67 year:2013 number:9-12 day:05 month:01 pages:2853-2861 https://doi.org/10.1007/s00170-012-4698-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 67 2013 9-12 05 01 2853-2861 |
allfields_unstemmed |
10.1007/s00170-012-4698-7 doi (DE-627)OLC2026050899 (DE-He213)s00170-012-4698-7-p DE-627 ger DE-627 rakwb eng 670 VZ Wei, Z. C. verfasserin aut Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface. Form error Sculptured surface Ball-end milling Tool deflection Wang, M. J. aut Tang, W. C. aut Zhu, J. N. aut Xia, G. C. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 67(2013), 9-12 vom: 05. Jan., Seite 2853-2861 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:67 year:2013 number:9-12 day:05 month:01 pages:2853-2861 https://doi.org/10.1007/s00170-012-4698-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 67 2013 9-12 05 01 2853-2861 |
allfieldsGer |
10.1007/s00170-012-4698-7 doi (DE-627)OLC2026050899 (DE-He213)s00170-012-4698-7-p DE-627 ger DE-627 rakwb eng 670 VZ Wei, Z. C. verfasserin aut Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface. Form error Sculptured surface Ball-end milling Tool deflection Wang, M. J. aut Tang, W. C. aut Zhu, J. N. aut Xia, G. C. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 67(2013), 9-12 vom: 05. Jan., Seite 2853-2861 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:67 year:2013 number:9-12 day:05 month:01 pages:2853-2861 https://doi.org/10.1007/s00170-012-4698-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 67 2013 9-12 05 01 2853-2861 |
allfieldsSound |
10.1007/s00170-012-4698-7 doi (DE-627)OLC2026050899 (DE-He213)s00170-012-4698-7-p DE-627 ger DE-627 rakwb eng 670 VZ Wei, Z. C. verfasserin aut Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface. Form error Sculptured surface Ball-end milling Tool deflection Wang, M. J. aut Tang, W. C. aut Zhu, J. N. aut Xia, G. C. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 67(2013), 9-12 vom: 05. Jan., Seite 2853-2861 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:67 year:2013 number:9-12 day:05 month:01 pages:2853-2861 https://doi.org/10.1007/s00170-012-4698-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 67 2013 9-12 05 01 2853-2861 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 67(2013), 9-12 vom: 05. Jan., Seite 2853-2861 volume:67 year:2013 number:9-12 day:05 month:01 pages:2853-2861 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 67(2013), 9-12 vom: 05. Jan., Seite 2853-2861 volume:67 year:2013 number:9-12 day:05 month:01 pages:2853-2861 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Form error Sculptured surface Ball-end milling Tool deflection |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Wei, Z. C. @@aut@@ Wang, M. J. @@aut@@ Tang, W. C. @@aut@@ Zhu, J. N. @@aut@@ Xia, G. C. @@aut@@ |
publishDateDaySort_date |
2013-01-05T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026050899 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026050899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323140224.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-012-4698-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026050899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-012-4698-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Z. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Form error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sculptured surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ball-end milling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tool deflection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, M. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, W. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, J. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, G. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">67(2013), 9-12 vom: 05. Jan., Seite 2853-2861</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:9-12</subfield><subfield code="g">day:05</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:2853-2861</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-012-4698-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2013</subfield><subfield code="e">9-12</subfield><subfield code="b">05</subfield><subfield code="c">01</subfield><subfield code="h">2853-2861</subfield></datafield></record></collection>
|
author |
Wei, Z. C. |
spellingShingle |
Wei, Z. C. ddc 670 misc Form error misc Sculptured surface misc Ball-end milling misc Tool deflection Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path |
authorStr |
Wei, Z. C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path Form error Sculptured surface Ball-end milling Tool deflection |
topic |
ddc 670 misc Form error misc Sculptured surface misc Ball-end milling misc Tool deflection |
topic_unstemmed |
ddc 670 misc Form error misc Sculptured surface misc Ball-end milling misc Tool deflection |
topic_browse |
ddc 670 misc Form error misc Sculptured surface misc Ball-end milling misc Tool deflection |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path |
ctrlnum |
(DE-627)OLC2026050899 (DE-He213)s00170-012-4698-7-p |
title_full |
Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path |
author_sort |
Wei, Z. C. |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
2853 |
author_browse |
Wei, Z. C. Wang, M. J. Tang, W. C. Zhu, J. N. Xia, G. C. |
container_volume |
67 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Wei, Z. C. |
doi_str_mv |
10.1007/s00170-012-4698-7 |
dewey-full |
670 |
title_sort |
form error compensation in ball-end milling of sculptured surface with z-level contouring tool path |
title_auth |
Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path |
abstract |
Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface. © Springer-Verlag London 2013 |
abstractGer |
Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface. © Springer-Verlag London 2013 |
abstract_unstemmed |
Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface. © Springer-Verlag London 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 |
container_issue |
9-12 |
title_short |
Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path |
url |
https://doi.org/10.1007/s00170-012-4698-7 |
remote_bool |
false |
author2 |
Wang, M. J. Tang, W. C. Zhu, J. N. Xia, G. C. |
author2Str |
Wang, M. J. Tang, W. C. Zhu, J. N. Xia, G. C. |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-012-4698-7 |
up_date |
2024-07-04T02:59:18.329Z |
_version_ |
1803615688031469568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026050899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323140224.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-012-4698-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026050899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-012-4698-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Z. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Form error compensation in ball-end milling of sculptured surface with z-level contouring tool path</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents an integrated form error compensation approach for ball-end milling of sculptured surface with z-level contouring tool path. From the analysis of local cutting equilibrium in general milling, an integrated form error compensation strategy is derived. In this strategy, the tool deflection is adopted as compensation value. The compensation value and local cutting equilibrium can be directly obtained from nominal cutting conditions; moreover, the time-consuming iterative process is no longer needed. The integrated strategy is then expanded to ball-end milling of sculptured surface based on the differential idea. A tool path modification model is also suggested to record the compensation value into tool path. A numerical example of comparing the calculation process of traditional multilevel compensation strategy and that of the integrated compensation strategy is described. The results of numerical examples show that the essentials of proposed integrated strategy and multilevel strategy are consistent, but the needed calculation steps of the two strategies are about 1 vs. 30. In the validation experiment, two practical sculptured surfaces are machined. Experimental results reveal that the integrated form error compensation approach can significantly reduce form error in ball-end milling of sculptured surface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Form error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sculptured surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ball-end milling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tool deflection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, M. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, W. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, J. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, G. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">67(2013), 9-12 vom: 05. Jan., Seite 2853-2861</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:9-12</subfield><subfield code="g">day:05</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:2853-2861</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-012-4698-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2013</subfield><subfield code="e">9-12</subfield><subfield code="b">05</subfield><subfield code="c">01</subfield><subfield code="h">2853-2861</subfield></datafield></record></collection>
|
score |
7.401642 |