Geometric error compensation for multi-axis CNC machines based on differential transformation
Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece co...
Ausführliche Beschreibung
Autor*in: |
Chen, Jianxiong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 71(2013), 1-4 vom: 05. Dez., Seite 635-642 |
---|---|
Übergeordnetes Werk: |
volume:71 ; year:2013 ; number:1-4 ; day:05 ; month:12 ; pages:635-642 |
Links: |
---|
DOI / URN: |
10.1007/s00170-013-5487-7 |
---|
Katalog-ID: |
OLC2026058385 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026058385 | ||
003 | DE-627 | ||
005 | 20230323140415.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-013-5487-7 |2 doi | |
035 | |a (DE-627)OLC2026058385 | ||
035 | |a (DE-He213)s00170-013-5487-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Chen, Jianxiong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Geometric error compensation for multi-axis CNC machines based on differential transformation |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London 2013 | ||
520 | |a Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path. | ||
650 | 4 | |a CNC machine tool | |
650 | 4 | |a Geometric errors | |
650 | 4 | |a Differential transformation | |
650 | 4 | |a Automatic modeling | |
700 | 1 | |a Lin, Shuwen |4 aut | |
700 | 1 | |a He, Bingwei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 71(2013), 1-4 vom: 05. Dez., Seite 635-642 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:71 |g year:2013 |g number:1-4 |g day:05 |g month:12 |g pages:635-642 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-013-5487-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4046 | ||
951 | |a AR | ||
952 | |d 71 |j 2013 |e 1-4 |b 05 |c 12 |h 635-642 |
author_variant |
j c jc s l sl b h bh |
---|---|
matchkey_str |
article:02683768:2013----::emtierropnainomlixsnmciebsdnif |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s00170-013-5487-7 doi (DE-627)OLC2026058385 (DE-He213)s00170-013-5487-7-p DE-627 ger DE-627 rakwb eng 670 VZ Chen, Jianxiong verfasserin aut Geometric error compensation for multi-axis CNC machines based on differential transformation 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path. CNC machine tool Geometric errors Differential transformation Automatic modeling Lin, Shuwen aut He, Bingwei aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 71(2013), 1-4 vom: 05. Dez., Seite 635-642 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:71 year:2013 number:1-4 day:05 month:12 pages:635-642 https://doi.org/10.1007/s00170-013-5487-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 71 2013 1-4 05 12 635-642 |
spelling |
10.1007/s00170-013-5487-7 doi (DE-627)OLC2026058385 (DE-He213)s00170-013-5487-7-p DE-627 ger DE-627 rakwb eng 670 VZ Chen, Jianxiong verfasserin aut Geometric error compensation for multi-axis CNC machines based on differential transformation 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path. CNC machine tool Geometric errors Differential transformation Automatic modeling Lin, Shuwen aut He, Bingwei aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 71(2013), 1-4 vom: 05. Dez., Seite 635-642 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:71 year:2013 number:1-4 day:05 month:12 pages:635-642 https://doi.org/10.1007/s00170-013-5487-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 71 2013 1-4 05 12 635-642 |
allfields_unstemmed |
10.1007/s00170-013-5487-7 doi (DE-627)OLC2026058385 (DE-He213)s00170-013-5487-7-p DE-627 ger DE-627 rakwb eng 670 VZ Chen, Jianxiong verfasserin aut Geometric error compensation for multi-axis CNC machines based on differential transformation 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path. CNC machine tool Geometric errors Differential transformation Automatic modeling Lin, Shuwen aut He, Bingwei aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 71(2013), 1-4 vom: 05. Dez., Seite 635-642 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:71 year:2013 number:1-4 day:05 month:12 pages:635-642 https://doi.org/10.1007/s00170-013-5487-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 71 2013 1-4 05 12 635-642 |
allfieldsGer |
10.1007/s00170-013-5487-7 doi (DE-627)OLC2026058385 (DE-He213)s00170-013-5487-7-p DE-627 ger DE-627 rakwb eng 670 VZ Chen, Jianxiong verfasserin aut Geometric error compensation for multi-axis CNC machines based on differential transformation 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path. CNC machine tool Geometric errors Differential transformation Automatic modeling Lin, Shuwen aut He, Bingwei aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 71(2013), 1-4 vom: 05. Dez., Seite 635-642 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:71 year:2013 number:1-4 day:05 month:12 pages:635-642 https://doi.org/10.1007/s00170-013-5487-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 71 2013 1-4 05 12 635-642 |
allfieldsSound |
10.1007/s00170-013-5487-7 doi (DE-627)OLC2026058385 (DE-He213)s00170-013-5487-7-p DE-627 ger DE-627 rakwb eng 670 VZ Chen, Jianxiong verfasserin aut Geometric error compensation for multi-axis CNC machines based on differential transformation 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2013 Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path. CNC machine tool Geometric errors Differential transformation Automatic modeling Lin, Shuwen aut He, Bingwei aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 71(2013), 1-4 vom: 05. Dez., Seite 635-642 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:71 year:2013 number:1-4 day:05 month:12 pages:635-642 https://doi.org/10.1007/s00170-013-5487-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 AR 71 2013 1-4 05 12 635-642 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 71(2013), 1-4 vom: 05. Dez., Seite 635-642 volume:71 year:2013 number:1-4 day:05 month:12 pages:635-642 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 71(2013), 1-4 vom: 05. Dez., Seite 635-642 volume:71 year:2013 number:1-4 day:05 month:12 pages:635-642 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
CNC machine tool Geometric errors Differential transformation Automatic modeling |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Chen, Jianxiong @@aut@@ Lin, Shuwen @@aut@@ He, Bingwei @@aut@@ |
publishDateDaySort_date |
2013-12-05T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026058385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026058385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323140415.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-013-5487-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026058385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-013-5487-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Jianxiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric error compensation for multi-axis CNC machines based on differential transformation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNC machine tool</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Shuwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Bingwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">71(2013), 1-4 vom: 05. Dez., Seite 635-642</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:635-642</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-013-5487-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2013</subfield><subfield code="e">1-4</subfield><subfield code="b">05</subfield><subfield code="c">12</subfield><subfield code="h">635-642</subfield></datafield></record></collection>
|
author |
Chen, Jianxiong |
spellingShingle |
Chen, Jianxiong ddc 670 misc CNC machine tool misc Geometric errors misc Differential transformation misc Automatic modeling Geometric error compensation for multi-axis CNC machines based on differential transformation |
authorStr |
Chen, Jianxiong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Geometric error compensation for multi-axis CNC machines based on differential transformation CNC machine tool Geometric errors Differential transformation Automatic modeling |
topic |
ddc 670 misc CNC machine tool misc Geometric errors misc Differential transformation misc Automatic modeling |
topic_unstemmed |
ddc 670 misc CNC machine tool misc Geometric errors misc Differential transformation misc Automatic modeling |
topic_browse |
ddc 670 misc CNC machine tool misc Geometric errors misc Differential transformation misc Automatic modeling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Geometric error compensation for multi-axis CNC machines based on differential transformation |
ctrlnum |
(DE-627)OLC2026058385 (DE-He213)s00170-013-5487-7-p |
title_full |
Geometric error compensation for multi-axis CNC machines based on differential transformation |
author_sort |
Chen, Jianxiong |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
635 |
author_browse |
Chen, Jianxiong Lin, Shuwen He, Bingwei |
container_volume |
71 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Chen, Jianxiong |
doi_str_mv |
10.1007/s00170-013-5487-7 |
dewey-full |
670 |
title_sort |
geometric error compensation for multi-axis cnc machines based on differential transformation |
title_auth |
Geometric error compensation for multi-axis CNC machines based on differential transformation |
abstract |
Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path. © Springer-Verlag London 2013 |
abstractGer |
Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path. © Springer-Verlag London 2013 |
abstract_unstemmed |
Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path. © Springer-Verlag London 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2018 GBV_ILN_2333 GBV_ILN_4046 |
container_issue |
1-4 |
title_short |
Geometric error compensation for multi-axis CNC machines based on differential transformation |
url |
https://doi.org/10.1007/s00170-013-5487-7 |
remote_bool |
false |
author2 |
Lin, Shuwen He, Bingwei |
author2Str |
Lin, Shuwen He, Bingwei |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-013-5487-7 |
up_date |
2024-07-04T03:00:23.675Z |
_version_ |
1803615756550668288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026058385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323140415.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-013-5487-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026058385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-013-5487-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Jianxiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric error compensation for multi-axis CNC machines based on differential transformation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNC machine tool</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Shuwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Bingwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">71(2013), 1-4 vom: 05. Dez., Seite 635-642</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:635-642</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-013-5487-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2013</subfield><subfield code="e">1-4</subfield><subfield code="b">05</subfield><subfield code="c">12</subfield><subfield code="h">635-642</subfield></datafield></record></collection>
|
score |
7.40086 |