Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis
Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat t...
Ausführliche Beschreibung
Autor*in: |
Gendron, Mathieu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 84(2015), 5-8 vom: 08. Sept., Seite 1013-1029 |
---|---|
Übergeordnetes Werk: |
volume:84 ; year:2015 ; number:5-8 ; day:08 ; month:09 ; pages:1013-1029 |
Links: |
---|
DOI / URN: |
10.1007/s00170-015-7765-z |
---|
Katalog-ID: |
OLC2026081832 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026081832 | ||
003 | DE-627 | ||
005 | 20230323140859.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-015-7765-z |2 doi | |
035 | |a (DE-627)OLC2026081832 | ||
035 | |a (DE-He213)s00170-015-7765-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Gendron, Mathieu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London 2015 | ||
520 | |a Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions. | ||
650 | 4 | |a Local heat treatment | |
650 | 4 | |a Induction heating modeling | |
650 | 4 | |a Non-linear optimization | |
650 | 4 | |a Finite element analysis | |
650 | 4 | |a Robotic process | |
650 | 4 | |a Crack repairs | |
650 | 4 | |a Cavitation damage repairs | |
650 | 4 | |a Erosion damage repairs | |
700 | 1 | |a Boudreault, Éric |4 aut | |
700 | 1 | |a Hazel, Bruce |4 aut | |
700 | 1 | |a Pham, Xuan-Tan |4 aut | |
700 | 1 | |a Champliaud, Henri |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 84(2015), 5-8 vom: 08. Sept., Seite 1013-1029 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:84 |g year:2015 |g number:5-8 |g day:08 |g month:09 |g pages:1013-1029 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-015-7765-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 84 |j 2015 |e 5-8 |b 08 |c 09 |h 1013-1029 |
author_variant |
m g mg é b éb b h bh x t p xtp h c hc |
---|---|
matchkey_str |
article:02683768:2015----::olnaotmztooaerbtcnutopoesolcletramnuigh |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00170-015-7765-z doi (DE-627)OLC2026081832 (DE-He213)s00170-015-7765-z-p DE-627 ger DE-627 rakwb eng 670 VZ Gendron, Mathieu verfasserin aut Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2015 Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions. Local heat treatment Induction heating modeling Non-linear optimization Finite element analysis Robotic process Crack repairs Cavitation damage repairs Erosion damage repairs Boudreault, Éric aut Hazel, Bruce aut Pham, Xuan-Tan aut Champliaud, Henri aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 84(2015), 5-8 vom: 08. Sept., Seite 1013-1029 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:84 year:2015 number:5-8 day:08 month:09 pages:1013-1029 https://doi.org/10.1007/s00170-015-7765-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 84 2015 5-8 08 09 1013-1029 |
spelling |
10.1007/s00170-015-7765-z doi (DE-627)OLC2026081832 (DE-He213)s00170-015-7765-z-p DE-627 ger DE-627 rakwb eng 670 VZ Gendron, Mathieu verfasserin aut Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2015 Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions. Local heat treatment Induction heating modeling Non-linear optimization Finite element analysis Robotic process Crack repairs Cavitation damage repairs Erosion damage repairs Boudreault, Éric aut Hazel, Bruce aut Pham, Xuan-Tan aut Champliaud, Henri aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 84(2015), 5-8 vom: 08. Sept., Seite 1013-1029 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:84 year:2015 number:5-8 day:08 month:09 pages:1013-1029 https://doi.org/10.1007/s00170-015-7765-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 84 2015 5-8 08 09 1013-1029 |
allfields_unstemmed |
10.1007/s00170-015-7765-z doi (DE-627)OLC2026081832 (DE-He213)s00170-015-7765-z-p DE-627 ger DE-627 rakwb eng 670 VZ Gendron, Mathieu verfasserin aut Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2015 Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions. Local heat treatment Induction heating modeling Non-linear optimization Finite element analysis Robotic process Crack repairs Cavitation damage repairs Erosion damage repairs Boudreault, Éric aut Hazel, Bruce aut Pham, Xuan-Tan aut Champliaud, Henri aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 84(2015), 5-8 vom: 08. Sept., Seite 1013-1029 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:84 year:2015 number:5-8 day:08 month:09 pages:1013-1029 https://doi.org/10.1007/s00170-015-7765-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 84 2015 5-8 08 09 1013-1029 |
allfieldsGer |
10.1007/s00170-015-7765-z doi (DE-627)OLC2026081832 (DE-He213)s00170-015-7765-z-p DE-627 ger DE-627 rakwb eng 670 VZ Gendron, Mathieu verfasserin aut Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2015 Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions. Local heat treatment Induction heating modeling Non-linear optimization Finite element analysis Robotic process Crack repairs Cavitation damage repairs Erosion damage repairs Boudreault, Éric aut Hazel, Bruce aut Pham, Xuan-Tan aut Champliaud, Henri aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 84(2015), 5-8 vom: 08. Sept., Seite 1013-1029 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:84 year:2015 number:5-8 day:08 month:09 pages:1013-1029 https://doi.org/10.1007/s00170-015-7765-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 84 2015 5-8 08 09 1013-1029 |
allfieldsSound |
10.1007/s00170-015-7765-z doi (DE-627)OLC2026081832 (DE-He213)s00170-015-7765-z-p DE-627 ger DE-627 rakwb eng 670 VZ Gendron, Mathieu verfasserin aut Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2015 Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions. Local heat treatment Induction heating modeling Non-linear optimization Finite element analysis Robotic process Crack repairs Cavitation damage repairs Erosion damage repairs Boudreault, Éric aut Hazel, Bruce aut Pham, Xuan-Tan aut Champliaud, Henri aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 84(2015), 5-8 vom: 08. Sept., Seite 1013-1029 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:84 year:2015 number:5-8 day:08 month:09 pages:1013-1029 https://doi.org/10.1007/s00170-015-7765-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 84 2015 5-8 08 09 1013-1029 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 84(2015), 5-8 vom: 08. Sept., Seite 1013-1029 volume:84 year:2015 number:5-8 day:08 month:09 pages:1013-1029 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 84(2015), 5-8 vom: 08. Sept., Seite 1013-1029 volume:84 year:2015 number:5-8 day:08 month:09 pages:1013-1029 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Local heat treatment Induction heating modeling Non-linear optimization Finite element analysis Robotic process Crack repairs Cavitation damage repairs Erosion damage repairs |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Gendron, Mathieu @@aut@@ Boudreault, Éric @@aut@@ Hazel, Bruce @@aut@@ Pham, Xuan-Tan @@aut@@ Champliaud, Henri @@aut@@ |
publishDateDaySort_date |
2015-09-08T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026081832 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026081832</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323140859.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-015-7765-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026081832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-015-7765-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gendron, Mathieu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local heat treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Induction heating modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-linear optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotic process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack repairs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cavitation damage repairs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Erosion damage repairs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boudreault, Éric</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hazel, Bruce</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pham, Xuan-Tan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Champliaud, Henri</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">84(2015), 5-8 vom: 08. Sept., Seite 1013-1029</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:08</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1013-1029</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-015-7765-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2015</subfield><subfield code="e">5-8</subfield><subfield code="b">08</subfield><subfield code="c">09</subfield><subfield code="h">1013-1029</subfield></datafield></record></collection>
|
author |
Gendron, Mathieu |
spellingShingle |
Gendron, Mathieu ddc 670 misc Local heat treatment misc Induction heating modeling misc Non-linear optimization misc Finite element analysis misc Robotic process misc Crack repairs misc Cavitation damage repairs misc Erosion damage repairs Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis |
authorStr |
Gendron, Mathieu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis Local heat treatment Induction heating modeling Non-linear optimization Finite element analysis Robotic process Crack repairs Cavitation damage repairs Erosion damage repairs |
topic |
ddc 670 misc Local heat treatment misc Induction heating modeling misc Non-linear optimization misc Finite element analysis misc Robotic process misc Crack repairs misc Cavitation damage repairs misc Erosion damage repairs |
topic_unstemmed |
ddc 670 misc Local heat treatment misc Induction heating modeling misc Non-linear optimization misc Finite element analysis misc Robotic process misc Crack repairs misc Cavitation damage repairs misc Erosion damage repairs |
topic_browse |
ddc 670 misc Local heat treatment misc Induction heating modeling misc Non-linear optimization misc Finite element analysis misc Robotic process misc Crack repairs misc Cavitation damage repairs misc Erosion damage repairs |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis |
ctrlnum |
(DE-627)OLC2026081832 (DE-He213)s00170-015-7765-z-p |
title_full |
Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis |
author_sort |
Gendron, Mathieu |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1013 |
author_browse |
Gendron, Mathieu Boudreault, Éric Hazel, Bruce Pham, Xuan-Tan Champliaud, Henri |
container_volume |
84 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Gendron, Mathieu |
doi_str_mv |
10.1007/s00170-015-7765-z |
dewey-full |
670 |
title_sort |
non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis |
title_auth |
Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis |
abstract |
Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions. © Springer-Verlag London 2015 |
abstractGer |
Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions. © Springer-Verlag London 2015 |
abstract_unstemmed |
Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions. © Springer-Verlag London 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
5-8 |
title_short |
Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis |
url |
https://doi.org/10.1007/s00170-015-7765-z |
remote_bool |
false |
author2 |
Boudreault, Éric Hazel, Bruce Pham, Xuan-Tan Champliaud, Henri |
author2Str |
Boudreault, Éric Hazel, Bruce Pham, Xuan-Tan Champliaud, Henri |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-015-7765-z |
up_date |
2024-07-04T03:03:49.915Z |
_version_ |
1803615972811079680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026081832</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323140859.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-015-7765-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026081832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-015-7765-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gendron, Mathieu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-linear optimization of a new robotic induction process for local heat treatment using thermal finite element analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Performing high-quality repair on aging hydro power equipment is a challenging issue for utilities. Weld repair deteriorates the mechanical properties of the base metal in and around the heat-affected zone. For martensitic stainless steel runners, there is no way to perform post-weld heat treatment (PWHT) on site to restore those properties without dismantling, a very expensive job for such large components, typical of power utilities. To perform in situ high-quality repairs on such components, a new robotic heat treatment process is developed. Heat is generated and controlled using a flat spiral coil mounted on a compact, portable robot and moved over the area needing heat treatment. Unlike conventional induction heating, which requires a customized coil, this new approach combines a universal coil and a flexible robot to heat a broad range of complex shapes. One critical aspect is to set heating and path parameters in order to generate a target spatial and temporal temperature field. This paper proposes a numerical method combining thermal finite element analysis and a non-linear optimization algorithm to set these parameters. The temperature resulting from the electromagnetic field induced by the coil is modeled using an average heat input source to improve computation speed. Good agreement is obtained between numerical and experimental results for PWHT under laboratory conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local heat treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Induction heating modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-linear optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotic process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack repairs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cavitation damage repairs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Erosion damage repairs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boudreault, Éric</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hazel, Bruce</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pham, Xuan-Tan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Champliaud, Henri</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">84(2015), 5-8 vom: 08. Sept., Seite 1013-1029</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:08</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1013-1029</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-015-7765-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2015</subfield><subfield code="e">5-8</subfield><subfield code="b">08</subfield><subfield code="c">09</subfield><subfield code="h">1013-1029</subfield></datafield></record></collection>
|
score |
7.401124 |