Optimization of membrane distillation (MD) technology for specific application desalination
Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Techno...
Ausführliche Beschreibung
Autor*in: |
Boukhriss, Mokhless [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 88(2016), 1-4 vom: 20. Apr., Seite 55-66 |
---|---|
Übergeordnetes Werk: |
volume:88 ; year:2016 ; number:1-4 ; day:20 ; month:04 ; pages:55-66 |
Links: |
---|
DOI / URN: |
10.1007/s00170-016-8756-4 |
---|
Katalog-ID: |
OLC2026091943 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026091943 | ||
003 | DE-627 | ||
005 | 20230323141042.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-016-8756-4 |2 doi | |
035 | |a (DE-627)OLC2026091943 | ||
035 | |a (DE-He213)s00170-016-8756-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Boukhriss, Mokhless |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization of membrane distillation (MD) technology for specific application desalination |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London 2016 | ||
520 | |a Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production. | ||
650 | 4 | |a Membrane distillation DCMD | |
650 | 4 | |a Mass transfer | |
650 | 4 | |a Heat transfer | |
650 | 4 | |a Modeling | |
650 | 4 | |a Simulation | |
650 | 4 | |a Solar collector | |
700 | 1 | |a Zhani, Khalifa |4 aut | |
700 | 1 | |a Ben Bacha, Habib |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 88(2016), 1-4 vom: 20. Apr., Seite 55-66 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2016 |g number:1-4 |g day:20 |g month:04 |g pages:55-66 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-016-8756-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 88 |j 2016 |e 1-4 |b 20 |c 04 |h 55-66 |
author_variant |
m b mb k z kz b h b bh bhb |
---|---|
matchkey_str |
article:02683768:2016----::piiainfebaeitlaindehooyoseiiap |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00170-016-8756-4 doi (DE-627)OLC2026091943 (DE-He213)s00170-016-8756-4-p DE-627 ger DE-627 rakwb eng 670 VZ Boukhriss, Mokhless verfasserin aut Optimization of membrane distillation (MD) technology for specific application desalination 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2016 Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production. Membrane distillation DCMD Mass transfer Heat transfer Modeling Simulation Solar collector Zhani, Khalifa aut Ben Bacha, Habib aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 88(2016), 1-4 vom: 20. Apr., Seite 55-66 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:88 year:2016 number:1-4 day:20 month:04 pages:55-66 https://doi.org/10.1007/s00170-016-8756-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 88 2016 1-4 20 04 55-66 |
spelling |
10.1007/s00170-016-8756-4 doi (DE-627)OLC2026091943 (DE-He213)s00170-016-8756-4-p DE-627 ger DE-627 rakwb eng 670 VZ Boukhriss, Mokhless verfasserin aut Optimization of membrane distillation (MD) technology for specific application desalination 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2016 Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production. Membrane distillation DCMD Mass transfer Heat transfer Modeling Simulation Solar collector Zhani, Khalifa aut Ben Bacha, Habib aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 88(2016), 1-4 vom: 20. Apr., Seite 55-66 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:88 year:2016 number:1-4 day:20 month:04 pages:55-66 https://doi.org/10.1007/s00170-016-8756-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 88 2016 1-4 20 04 55-66 |
allfields_unstemmed |
10.1007/s00170-016-8756-4 doi (DE-627)OLC2026091943 (DE-He213)s00170-016-8756-4-p DE-627 ger DE-627 rakwb eng 670 VZ Boukhriss, Mokhless verfasserin aut Optimization of membrane distillation (MD) technology for specific application desalination 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2016 Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production. Membrane distillation DCMD Mass transfer Heat transfer Modeling Simulation Solar collector Zhani, Khalifa aut Ben Bacha, Habib aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 88(2016), 1-4 vom: 20. Apr., Seite 55-66 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:88 year:2016 number:1-4 day:20 month:04 pages:55-66 https://doi.org/10.1007/s00170-016-8756-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 88 2016 1-4 20 04 55-66 |
allfieldsGer |
10.1007/s00170-016-8756-4 doi (DE-627)OLC2026091943 (DE-He213)s00170-016-8756-4-p DE-627 ger DE-627 rakwb eng 670 VZ Boukhriss, Mokhless verfasserin aut Optimization of membrane distillation (MD) technology for specific application desalination 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2016 Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production. Membrane distillation DCMD Mass transfer Heat transfer Modeling Simulation Solar collector Zhani, Khalifa aut Ben Bacha, Habib aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 88(2016), 1-4 vom: 20. Apr., Seite 55-66 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:88 year:2016 number:1-4 day:20 month:04 pages:55-66 https://doi.org/10.1007/s00170-016-8756-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 88 2016 1-4 20 04 55-66 |
allfieldsSound |
10.1007/s00170-016-8756-4 doi (DE-627)OLC2026091943 (DE-He213)s00170-016-8756-4-p DE-627 ger DE-627 rakwb eng 670 VZ Boukhriss, Mokhless verfasserin aut Optimization of membrane distillation (MD) technology for specific application desalination 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London 2016 Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production. Membrane distillation DCMD Mass transfer Heat transfer Modeling Simulation Solar collector Zhani, Khalifa aut Ben Bacha, Habib aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 88(2016), 1-4 vom: 20. Apr., Seite 55-66 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:88 year:2016 number:1-4 day:20 month:04 pages:55-66 https://doi.org/10.1007/s00170-016-8756-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 88 2016 1-4 20 04 55-66 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 88(2016), 1-4 vom: 20. Apr., Seite 55-66 volume:88 year:2016 number:1-4 day:20 month:04 pages:55-66 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 88(2016), 1-4 vom: 20. Apr., Seite 55-66 volume:88 year:2016 number:1-4 day:20 month:04 pages:55-66 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Membrane distillation DCMD Mass transfer Heat transfer Modeling Simulation Solar collector |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Boukhriss, Mokhless @@aut@@ Zhani, Khalifa @@aut@@ Ben Bacha, Habib @@aut@@ |
publishDateDaySort_date |
2016-04-20T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026091943 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026091943</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323141042.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-016-8756-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026091943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-016-8756-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boukhriss, Mokhless</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of membrane distillation (MD) technology for specific application desalination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane distillation DCMD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar collector</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhani, Khalifa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ben Bacha, Habib</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">88(2016), 1-4 vom: 20. Apr., Seite 55-66</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:20</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:55-66</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-016-8756-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2016</subfield><subfield code="e">1-4</subfield><subfield code="b">20</subfield><subfield code="c">04</subfield><subfield code="h">55-66</subfield></datafield></record></collection>
|
author |
Boukhriss, Mokhless |
spellingShingle |
Boukhriss, Mokhless ddc 670 misc Membrane distillation DCMD misc Mass transfer misc Heat transfer misc Modeling misc Simulation misc Solar collector Optimization of membrane distillation (MD) technology for specific application desalination |
authorStr |
Boukhriss, Mokhless |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Optimization of membrane distillation (MD) technology for specific application desalination Membrane distillation DCMD Mass transfer Heat transfer Modeling Simulation Solar collector |
topic |
ddc 670 misc Membrane distillation DCMD misc Mass transfer misc Heat transfer misc Modeling misc Simulation misc Solar collector |
topic_unstemmed |
ddc 670 misc Membrane distillation DCMD misc Mass transfer misc Heat transfer misc Modeling misc Simulation misc Solar collector |
topic_browse |
ddc 670 misc Membrane distillation DCMD misc Mass transfer misc Heat transfer misc Modeling misc Simulation misc Solar collector |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Optimization of membrane distillation (MD) technology for specific application desalination |
ctrlnum |
(DE-627)OLC2026091943 (DE-He213)s00170-016-8756-4-p |
title_full |
Optimization of membrane distillation (MD) technology for specific application desalination |
author_sort |
Boukhriss, Mokhless |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
55 |
author_browse |
Boukhriss, Mokhless Zhani, Khalifa Ben Bacha, Habib |
container_volume |
88 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Boukhriss, Mokhless |
doi_str_mv |
10.1007/s00170-016-8756-4 |
dewey-full |
670 |
title_sort |
optimization of membrane distillation (md) technology for specific application desalination |
title_auth |
Optimization of membrane distillation (MD) technology for specific application desalination |
abstract |
Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production. © Springer-Verlag London 2016 |
abstractGer |
Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production. © Springer-Verlag London 2016 |
abstract_unstemmed |
Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production. © Springer-Verlag London 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
1-4 |
title_short |
Optimization of membrane distillation (MD) technology for specific application desalination |
url |
https://doi.org/10.1007/s00170-016-8756-4 |
remote_bool |
false |
author2 |
Zhani, Khalifa Ben Bacha, Habib |
author2Str |
Zhani, Khalifa Ben Bacha, Habib |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-016-8756-4 |
up_date |
2024-07-04T03:05:19.687Z |
_version_ |
1803616066937552896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026091943</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323141042.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-016-8756-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026091943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-016-8756-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boukhriss, Mokhless</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of membrane distillation (MD) technology for specific application desalination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The major desalination problem in remote rural areas is the management and disposal of the brine. Today, conventional desalination technologies known are detent multistage or multistage flash (MSF), the vapor compression (VC), distillation multiple effects (MED), and reverse osmosis. Technology desalination of seawater in the presence of a membrane distillation unit driven by solar energy is a possible solution to reduce the energy costs of producing distilled water. The developed model is used to simulate the membrane distillation unit coupled with solar collector system in order to investigate the steady-state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The results obtained show the influence of external and internal parameters on the operating characteristics of the membrane distillation unit coupled with solar collector system. A global mathematical model based on heat and mass transfers is developed to investigate both the effect of different operating modes and the variation of functioning parameters and weather conditions on the freshwater production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane distillation DCMD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar collector</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhani, Khalifa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ben Bacha, Habib</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">88(2016), 1-4 vom: 20. Apr., Seite 55-66</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:20</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:55-66</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-016-8756-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2016</subfield><subfield code="e">1-4</subfield><subfield code="b">20</subfield><subfield code="c">04</subfield><subfield code="h">55-66</subfield></datafield></record></collection>
|
score |
7.402237 |